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Abstract

In the present work, motivated by the definition of a clustering method for func-
tional data, the small–ball probability (SmBP) of a Hilbert valued process is consid-
ered. In particular, asymptotic factorizations for the SmBP are rigorously established
exploiting the Karhunen–Loève expansion whose basis turns out to be the optimal one
in controlling the approximation errors. In fact, as the radius of the ball tends to zero,
the SmBP is asymptotically proportional to the joint density of an increasing number
(with the radius) of principal components (PCs) evaluated at the center of the ball up
to a factor depending only on the radius. As a consequence, the joint distribution of the
first PCs provides a surrogate density of the process and, hence, in a very natural way,
becomes the core in defining a density based unsupervised classification algorithm. To
implement the latter, a non parametric estimator for such joint density is introduced
and it is proved that used estimated PCs does not affect the rate of convergence. Fi-
nally, after a discussion on the proposed clustering algorithm, as an illustration, an
application to a real dataset is provided.
Keywords. density based clustering; Hilbert functional data; Karhunen–Loève de-
composition; kernel density estimate; small–ball probability.

Introduction

Cluster analysis, or unsupervised classification, is an exploratory tool encompassing a
set of techniques whose scope is to reveal structural differences among data: the aim
is to organize a collection of observations into “homogeneous” (in some sense) sub-
sets through heuristic, or geometric as well as probabilistic approaches (some classical
insights on such topics can be found in [27]).

In the multivariate context, an important class of clustering approaches is the so–
called “density oriented” methods. The primitive idea dates back to a paper by Wishart
[51]: clusters are identified by the “high density regions” and, in particular, by the con-
nected components of the level set (at a given threshold c) of the joint distribution f of
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the data; i.e. the connected components of {f > c} (see [27]). Along the years, this idea
has been explored by various authors, as instance, in estimating the number of clusters
[14] and/or in estimating the clusters themselves [15]. Such clustering approach is not
very flexible and leads to an easy shortcoming: the number of connected components
depends on the chosen threshold c that, consequently, may not catch all the structural
differences among data. In contrast to the previous method (also known as “absolutely
density clustering” [7, 8]), in order to avoid such drawbacks and inspiring to a “rela-
tive density clustering” (see e.g. [32]), it is possible to introduce a hierarchical family
{Gλ}λ≥0 of λ–level sets associated to the density function f ; for each λ, the connected
components of Gλ allow to defined a dendogram named pruned tree ([40, 41, 46, 47]
and references therein). It is worth noting how such methods implicitly exploit local
properties of the density and, hence, lead to identify clusters as “the locally high den-
sity regions”. In this view, to look for the local maxima of the density (or modes) may
allow to straightly identify the hierarchical family of clusters. Such ideas have been
explored by the research stream called “mode hunting/seeking”; see [12, 18, 33] and
references therein.

Clustering methods apply to wide range of situations, that may go beyond the
multivariate framework. When observed data are curves, surfaces, images, objects or,
briefly, functional data (see e.g. monographs [23] and [39], and [9] for recent contri-
butions), the classical multivariate approaches can not always be directly used due
to problems related to the dimensionality of the space to which the data belong, and
hence a variety of specific clustering methods have been introduced (see e.g. the recent
survey [29]). It’s worth to point out that frequently, whatever the proposed method is,
there exists an underlying multivariate strategy to which it is inspired.

The present work seeks to contribute to the literature of clustering for functional
data, by proposing a new approach inspired to above illustrated family of “density
oriented” methods. Among the other, the first problem one has to deal with is the
definition of an object that plays the same role of the joint density distribution in the
multivariate context. In fact, the main problem is that without an underlying dominant
probability measure, the Radon–Nikodym derivative can not be used straightforward
and, hence, a “density oriented” clustering approach can not be immediately extended
to the functional context.

To manage this issue, in the functional statistic literature a concept of “surrogate
density” is often considered. It is derived from the notion of small–ball probability of
a random function X, briefly SmBP (see [23] and reference therein), defined as

ϕ (x, ε) = P (‖X − x‖ < ε) , (1)

with x in the same space where X takes its values, and ε > 0. Because its asymptotic
behaviour as ε tends to zero can be interpreted as the intensity of concentration of the
considered process, the SmBP limiting behaviour has been studied from a theoretical
point of view (for instance, refer to the small tails/deviations theory [2, 34–36] that
essentially focuses on weighted series of i.i.d. Gaussian random variables), often used
in functional statistics to derive asymptotics in mode estimations (see [16, 24]), as
well as in non parametric regression literature in evaluating the rate of convergence of
estimators (see [23]). To the best of our knowledge, despite these efforts, an explicit
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general expression of ϕ(x, ε) as ε goes to zero is still not available, and hence the
problem to provide an approximation have become a subject widely discussed (see, for
instance, [23] and references therein). In functional framework, one attractive way in
studying the SmBP is to assume (as done, for instance, in [24, 25]) that, asymptotically,
the dependence on x and ε is broken by means of two function Ψ and φ as follow

ϕ(x, ε) = Ψ (x)φ (ε) + o (φ (ε)) , ε→ 0, (2)

where φ (ε) is a kind of “volume parameter” which does not depend on x whilst Ψ,
whose definition is strongly related to the choice of ‖·‖ and depends only on the center
x, behaves as the intensity of the SmBP. It is worth noting that whenever the SmBP
is a mixture, Ψ is a mixture too: it becomes the natural candidate in playing the role
that the multivariate density has in the “local high density regions” finite dimensional
clustering method and, consequently, the knowledge of its shape or characterization
will be crucial.

The paper [17] goes along this direction providing a factorization analogous to (2).
There the authors consider a functional Hilbert valued process X and develop the no-
tion of intensity of SmBP for functional data in the space determined by the basis
of the Karhunen–Loève decomposition (i.e. the principal components analysis of X).
In particular, besides some technical hypothesis mainly concerning the eigenvalues of
the covariance operator of X and the regularity of x, assuming that principal com-
ponents are independent with positive and sufficiently smooth density function {f̃j},
they showed that

ϕ(x, ε) ∼
∏
j≤d

f̃j (xj)
εdπd/2

Γ (d/2 + 1)
exp{o(d)}, ε→ 0, (3)

where d = d(ε) is the number of considered terms of the decomposition diverging
to infinity as ε → 0. Now, even if the factorization in (3) leads to a very simple
interpretation of the SmBP and overrides the curse of dimensionality in its estimation
(indeed, it depends only on univariate marginal densities) allowing the implementation
of a Gaussian mixture clustering procedure (see [29, 30]), the independence assumption
and the use of the principal components basis turn to be quite restrictive. In fact, from
a “intensity based” clustering procedure, independence drives in an over estimation of
the number of modes, while, from a theoretical point of view, the use of the principal
component basis (used to heuristically but not conventionally support the independence
assumption) contrasts with (2) since the latter should be basis independent.

Thus, before tackling practical problems connected with the implementation of a
clustering algorithm, we have faced the above drawbacks: a whole part of this paper,
which constitutes a theoretical improvement and can be read independently from the
rest, is devoted to propose more general factorizations for the SmBP, dropping the
hypothesis of independence and being basis free. Concerning this latter task, it will
turn out that the basis provided by the Kaharunen–Loève expansion (namely, the so–
called functional principal component analysis or simply FPCA) is, in a sense that will
be specified, the optimal one.

Such factorizations put forward, in a very natural way, the joint density distribution
of the first d coefficients of the chosen basis (ordered with respect to the explained
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variance) to be the candidate for a “density” oriented clustering procedure in the
functional framework, the motivating goal of this paper. To implement an algorithm,
a precondition is obviously the estimation of such density: we propose a classical
multivariate kernel density approach. Since, the estimation procedure involves the
estimated coefficients instead of the true ones, one has to wonder if that could produce
a deterioration of the rate of convergence for the density estimator: we prove that,
under general conditions, this does not happen.

The set of obtained theoretical results constitute the foundation for our clustering
method for functional data: the main idea is to find high intensity regions from the
modes of the intensity mixture, by assigning each observation to a suitable “proximity
domain” of a mode. To show how the approach works on real data, it has been applied
to a well-known functional data set: problems connected with practical implementation
are discussed.

Paper outline goes as follow: Section 1 introduces assumptions and main theoretical
results concerning the SmBP factorizations. Section 2 provides the asymptotic theorem
in estimating the joint density of the first d coefficients. Section 3 details the clustering
notations and procedure while Section 4 presents an application to real data. Finally,
in Section 5, all proofs are collected.

1 Notations and main theoretical results

For the sake of clarity, this section is divided in four parts. The first provides notations
and some assumptions. The second part furnished a first factorization of the SmBP
and some asymptotic results that, in the third part, drive to the main theoretical result
of this paper. In this third part, the (covariance operator) eigenvalues role in balancing
the error trade–off of the SmBP is emphasized. The latter part is devoted in weakening
conditions on eigenvalues.

1.1 Notations and Regularity Assumptions

Let (Ω,F ,P) be a probability space and L2
[0,1] be the Hilbert space of square integrable

real functions on [0, 1] endowed with the inner product 〈g, h〉 =
∫ 1

0 g (t)h (t) dt and the

induced norm ‖g‖2 = 〈g, g〉. A Random Curve (RC) X is a measurable map defined
on (Ω,F) taking values in (L2

[0,1],B), where B denotes the Borel sigma–algebra induced

by ‖ · ‖. Denote by

µX = {E [X (t)] , t ∈ [0, 1]} , and Σ [·] = E [〈X − µX , ·〉 (X − µX)]

its mean function and covariance operator respectively. Although all results in Sec-
tion 1.2 are independent on the choice of the Hilbert space basis, let us introduce a
particular (and widely known) basis that turns to be optimal in some sense (see Re-
mark 14). In this view, let us consider the Karhunen–Loève expansion associated to the
RC X (see e.g. [10]): denoting by {λj , ξj}∞j=1 the decreasing to zero sequence of non–
negative eigenvalues and their associated orthonormal eigenfunctions of the covariance
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operator Σ, the RC X admits the following representation

X (t) = µX (t) +
∞∑
j=1

θjξj (t) , 0 ≤ t ≤ 1, (4)

where θj = 〈X − µX , ξj〉 are the so–called principal components (PCs) of X satisfying

E [θj ] = 0, V ar (θj) = λj , E
[
θjθj′

]
= 0, j 6= j′.

In other words, PCs are uncorrelated real random variables (not necessarily indepen-
dent) obtained projecting the process X on the eigenfunctions {ξj}∞j=1 (that provides
an orthonormal basis of the considered Hilbert space). This representation, taking ad-
vantage of the euclidean underline structure, isolates the manner in which the random
function X(ω, t) depends upon t and upon ω.
In what follows and without loss of generality, suppose that µX = 0. Moreover, de-
noting by Πd the projector on the d–dimensional space spanned by {ξj}dj=1, assume
that the first d PCs, namely θ = ΠdX = (θ1, . . . , θd)

′, admit a sufficiently smooth joint
strictly positive probability density, namely ϑ ∈ Rd → fd(ϑ), so that the Taylor For-
mula about Πdx can be considered and the approximation error controlled assuming
that

sup
i,j∈{1,...,d}

∣∣∣∣ ∂2fd
∂ϑi∂ϑj

(ϑ)

∣∣∣∣ ≤ C(d), for any ϑ ∈ Rd,

where the positive constant C(d) can not be chosen uniformly in d ∈ N. In fact,
C(d) increases (as a function of the eigenvalues) with d because, adding further high
frequencies PCs whose variance λj decays to zero, the mass of probability concentrates
more and more around the mean value of the process and the density function increases
its values (as well as its second derivatives). As a consequence, to control such effect
let us assume that fd is strictly positive at ϑ = (ϑ1, . . . , ϑd)

′ ∈ Rd, twice differentiable
everywhere and such that, there exists a positive constant C1 (not depending on d)
such that

sup
d∈N

sup
i,j∈{1,...,d}

√
λiλj

∣∣∣∣ ∂2fd
∂ϑi∂ϑj

(ϑ)

∣∣∣∣ / |fd(ϑ)| ≤ C1, for any ϑ ∈ D, (5)

where D =
{
ϑ ∈ Rd :

∑
j≤d (ϑj − xj)2 ≤ ρ2

}
for some ρ ≥ ε. Remark 1 shows how (5)

can be derived in an intuitive way considering a standardized version of the PCs.

Remark 1 To better appreciate the meaning of (5), note that it is equivalent in as-
suming, uniformly with respect to d ∈ N, the boundedness of the second derivative of the
density probability function, say gd, of the random vector W = (W1, . . . ,Wd)

′ defined
as a deterministic translation of the component wise standardized version of θ by

Wj =
1√
λj
〈X − x, ξj〉 =

θj − 〈x, ξj〉√
λj

.
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In fact, since W is a linear transformation of θ, its probability density function gd is
related to fd by

gd(w) =

∏
j≤d

√
λj

 fd

(
w1

√
λ1 + x1, . . . , wd

√
λd + xd

)
,

where xj = 〈x, ξj〉, j = 1, . . . , d and, hence, condition (5) is equivalent to the following
one

sup
d∈N

sup
i,j∈{1,...,d}

∣∣∣∣ ∂2gd
∂wi∂wj

(w)

∣∣∣∣/|gd(w)| ≤ C1, for any w ∈ D′, (6)

where D′ =
{
w ∈ Rd :

∑
j≤dw

2
jλj ≤ ρ2

}
for some ρ ≥ ε. Finally, it is worth to note

that condition (5), or (6), is not a restrictive assumption since it includes, for instance,
the case in which X is a Gaussian Hilbert valued process. In this case, {θj}∞j=1 are
independent zero mean univariate Gaussian random variables each one with variance
{λj}∞j=1 and marginal densities {f̃j}∞j=1. The joint probability density of the first d PCs

is given by fd (ϑ1, . . . , ϑd) =
∏
j≤d f̃j(ϑj) and it satisfies (5).

1.2 Approximation results

The aim of this section is twofold. The first goal is to provide an approximation
theorem for the SmBP at a given point x ∈ L2

[0,1] as ε goes to zero; it emphasizes, by
means of a factorization, the trade–off between the first d principal components and
the remainders, when d is fixed. Such approximation looks like (2) up to an extra
factor. The study of its behaviour is the second task of the section: it turns out that
the extra term becomes negligible provided that d = d(ε) goes to infinity as ε tends
to zero. Although the two results hold separately, technical problems arise when one
tries to combine them in order to factorize the SmBP as in (2). These questions will
be deepened in Section 1.3.
Let us introduce the first aim by:

Theorem 2 Let d be a finite positive integer, X be a process as above, x ∈ L2
[0,1].

Consider the small ball probabilities of the process X to be defined as in (1), that is

ϕ (x, ε) = P (‖X − x‖ < ε) , for ε > 0. (1)

Suppose θ = (θ1, . . . , θd)
′ admits probability density function fd : Rd → R strictly

positive at any ϑ ∈ Rd and satisfying (5) or, equivalently, (6). Let

ϕd(x, ε) = f(x1, . . . , xd)
εdπd/2

Γ (d/2 + 1)
E
[
(1− S)d/2 I{S≤1}

]
, for ε > 0. (7)

where

S = S(x, ε, d) =
1

ε2

∑
j≥d+1

(θj − xj)2
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and, xj = 〈x, ξj〉, j = 1, . . . , d. Then

|ϕ(x, ε)− ϕd(x, ε)| ≤
C1

2

∑
j≤d

1

λj

 ε2ϕd(x, ε), for ε > 0 (8)

and
ϕ(x, ε) = ϕd(x, ε) + o (ϕd(x, ε)) , for ε→ 0. (9)

Theorem 2 and, in particular, Equation (9) establishes that, for a fixed positive
integer d and x in L2

[0,1] as ε → 0, the SmBP ϕ(x, ε) behaves as ϕd(x, ε). The latter

is the usual approximation of the SmBP in a d–dimensional space (i.e. the probability
density function of the first d PCs at (x1, . . . , xd) times the volume of the d–dimensional
ball of radius ε) up to the extra term scale factor

E
[
(1− S)d/2 I{S≤1}

]
. (10)

Above comments lead immediately to the second task of this section: to study the
behaviour of this extra term. In fact, expected value (10) may be interpreted as a
correction factor weighting the use of a truncated version of the process expansion (4).
It is exactly equal to 1, whenever the norm is replaced with the PC–seminorm ‖Πd[·]‖,
recovering results in [23, Chapter 13]. Otherwise, its behaviour is strictly related to the
real random variable S(x, ε, d) that depends on x, ε (center and radius of the considered
ball respectively) and d (number of considered PCs). On the one hand, whenever d and
x are fixed, S diverges with ε tending to zero. On the other hand, if ε and x are fixed,
the larger the number of d and the smaller the value of S. Hence, one may wonder
if it is possible to balance these two effects (as instance, tying the behaviour of d to
that of ε) in order to control (10) in (9). In Proposition 5, we will provide conditions
for which, as ε → 0, expectation (10) tends to 1 (hence, negligible in (9)); intuitively,
this happens when S is sufficiently close to zero or, more precisely, when d increases
“sufficiently fast” with respect to the rate of convergence (to zero) of ε.
Next efforts go in this direction providing the behaviour for both S and (10) as ε goes
to zero. To do this, recall that {ξj}∞j=1 is an orthonormal basis for L2

[0,1] and consider

x ∈ L2
[0,1] such that

sup
j≥1

(x2
j/λj) <∞, (11)

that is, whenever x is sufficiently close to the process in its high–frequency part. The
latter, is not an unusual condition since it is equivalent to supj≥1 E

[
(θj − xj)2/λj

]
<∞

that was assumed, for example, in [17, Condition (4.1)] for similar purposes. Moreover,
it holds whenever x belongs to the reproducing kernel Hilbert space generated by the
process X:

RKHS(X) =

x ∈ L2
[0,1] :

∑
j≥1

λ−1
j 〈x, ξj〉

2 <∞

 ; (12)

e.g. [5, p.69] (roughly speaking, x ∈ RKHS(X) only if it is “at least smooth as the
covariance function”, see [5, p.13]).
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Proposition 3 Assume (11) and choose d = d(ε) so that it diverges to infinity as ε
tends to zero and ∑

j≥d+1

λj = o(ε2). (13)

Then, as ε → 0, S(x, ε, d) → 0, where the convergence holds almost surely, in the L1

norm and hence in probability.
Moreover, as ε→ 0,

E
[
(1− S)d/2 I{S≤1}

]2/d
→ 1, or, log

(
E
[
(1− S)d/2 I{S≤1}

])
= o(d). (14)

Remark 4 Note that a possible choice for d = d(ε) satisfying (13) can be, for a fixed
δ > 0, as follow

d = min

k ∈ N :
∑
j≥k+1

λj ≤ ε2+δ

 , for any ε > 0.

Such a minimum is well defined since eigenvalues series is convergent.

Proposition 5 Assume (11) and suppose an hyperbolic decay of the eigenvalues; that
is ∑

j≥d+1

λj = o (1/d) , as d→∞. (15)

Choose d = d(ε) so that it diverges to infinity as ε tends to zero and

d
∑
j≥d+1

λj = o(ε2). (16)

Then, as ε→ 0,

0 ≤ 1− E
[
(1− S)d/2 I{S≤1}

]
≤ C2d

2ε2

∑
j≥d+1

λj = o(1). (17)

Remark 6 Note that a possible choice for d = d(ε) satisfying (16) (and (13) as well)
can be, for a fixed δ > 0, as follow

d = min

k ∈ N : k
∑
j≥k+1

λj ≤ ε2+δ

 .

Such a minimum is well defined thanks to the eigenvalues hyperbolic decay assumption
(15).

Finally, it is worth to point out that the choice of d(ε) in propositions 3 and 5
depends on the eigenvalues. Moreover, convergence of S does not require to state a
particular decay rate for the eigenvalues while, on the contrary, the behaviour of (10)
depends on (at least) the hyperbolic decay of the eigenvalues (15).
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1.3 Errors trade–off and SmBP intensity: the eigenvalues
role

The goal of this section is to establish which conditions on the process allow to simplify
(9) by dropping the extra term (10) and, hence, to get

ϕ(x, ε) ∼ fd (x1, . . . , xd)
εdπd/2

Γ (d/2 + 1)
, as ε→ 0.

Such result is reached combining Theorem 2 (claimed for a fixed d) and Proposition 5
(stated with d being a diverging function of ε): as announced at the beginning of the
previous section, in what follow the arising problems are deepened. To do this, consider

|ϕ(x, ε)− fdVd(ε)| ≤ |ϕ(x, ε)− ϕd(x, ε)|+ |ϕd(x, ε)− fdVd(ε)|

where fd = fd (x1, . . . , xd), Vd(ε) = εdπd/2/Γ (d/2 + 1) (the volume of the d–dimensional
ball with radius ε) and ϕd(x, ε) is defined in (7). Then (8) and (17) lead to∣∣∣∣ ϕ(x, ε)

fdVd(ε)
− 1

∣∣∣∣ ≤ C1

2
ε2
∑
j≤d

1

λj
+
C2

2

d

ε2

∑
j≥d+1

λj , (18)

that furnishes the wished result whenever the right–hand side vanishes as ε goes to
zero. In fact, for a suitable choice d(ε), the term dε−2

∑
j≥d+1 λj converges to zero as

established in (16). Coherently with this choice of d(ε), it must hold

ε2 = o

∑
j≤d

1

λj

−1 , as ε→ 0. (19)

Hence, plugging (19) into (16), the condition

d

 ∑
j≥d+1

λj

∑
j≤d

1

λj

 = o (1) , as d→∞, (20)

highlights the announced trade–off between the errors approximation in (8) and in (17),
which is strictly related to a suitable balance between the first d terms of the spectrum
of the covariance operator and the remainders.

Remark 7 As instance, (20) is satisfied whenever λj = exp{−βjα} with β > 0 and
α > 1. In this case, for any real number n ≥ 2, it holds

d

 ∑
j≥d+1

λj

∑
j≤d

1

λj

 ≤ dn

λd

 ∑
j≥d+1

λj

→ 0, as d→∞. (21)
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In fact, some algebra and the Bernoulli inequality (i.e. (1 + s)r ≥ 1 + rs for s ≥ −1
and r ∈ R \ (0, 1)) give

dn

λd

 ∑
j≥d+1

λj

 = dn

∑
j≥1

exp{βdα(1− (1 + j/d)α)}


≤ dn

∑
j≥1

exp{−βαdα−1j}

 .

Since exp{−βαdα−1j} ≤ (j2dn+δ)−1 holds eventually (with respect to d) for some pos-
itive δ and for each j ∈ N, (21) is obtained.

It is worth noting that (20) is a necessary condition (for the eigenvalues sequence)
to guarantee that the right–hand side of (18) converges to zero (that is a sufficient
condition so that Theorem 8 and Proposition 5 hold simultaneously). One may wonder,
if (20) is a sufficient condition as well: in other words, if (20) allows to provide a suitable
definition of d(ε) so that (19) and (16) hold at the same time and, hence, the right–
hand side of (18) vanishes. To clarify this aspect note that (20) implies the existence
of d0 ∈ N so that for any d ≥ d0

d
∑
j≥d+1

λj <

∑
j≤d

1

λj

−1

.

Moreover, there exist δ1, δ2 ∈ (0, 1) (depending on d) for which, for any d ≥ d0

0 ≤ d
∑
j≥d+1

λj ≤ b(d, {λj}j≥d+1, δ1) < B(d, {λj}j≤d, δ2) ≤

∑
j≤d

1

λj

−1

, (22)

where

b(d, {λj}j≥d+1, δ1) =

d ∑
j≥d+1

λj

1−δ1

, B(d, {λj}j≤d, δ2) =

∑
j≤d

1

λj

δ2−1

.

As instance, for a given d ≥ d0, fix δ1 ∈ (0, 1) and solve (22) with respect to δ2, that is

δ2 ∈ (min {0, β(δ1)} , 1) where β(δ1) = 1 + (1 − δ1) ln
(
d
∑

j≥d+1 λj

)
/ ln

(∑
j≤d λ

−1
j

)
.

As a consequence, for any ε > 0 and for such a choice of δ1, δ2, the following minimum
is well–defined

d(ε) = min
{
k ∈ N : b(k, {λj}j≥k+1, δ1) ≤ ε2 ≤ B(k, {λj}j≤k, δ2)

}
. (23)

With this choice of d(ε), we have that

ε2 ≤ B(d, {λj}j≤d, δ2), and ε−2 ≤ b(d, {λj}j≥d+1, δ1)−1,

which guarantee that the right–hand side of (18) vanishes as ε goes to zero. The wished
result is then reached and stated in the following theorem.
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Theorem 8 Consider hypothesis of Theorem 2 and assumptions (11) and (20) and
choose d(ε) as in (23). Then, as ε→ 0, d→∞ and

ϕ(x, ε) = fd (x1, . . . , xd)Vd(ε) + o(fdVd(ε)), (24)

with Vd(ε) = εdπd/2/Γ (d/2 + 1).

Remark 9 Note that Equation (24) is exactly the first order approximation that can
be derived for the SmBP of a d–dimensional process (by considering the Taylor formula
for the density of the multivariate process). Moreover, it is the same approximation pro-
vided for Hilbert valued processes in [23, Proof of Lemma 13.6] except for the fact that,

there, authors define the SmBP for the semi–metric
(∑d

j=1 〈x− y, ej〉
2
)1/2

(instead of

the Hilbert metric), where d is fixed and {ej}dj=1 are elements of an orthonormal basis
of the considered Hilbert space. In spite of these strong intuitive similarities, it is worth
to point out that there are still differences as explained in [17, Section 4.3]. These are
strictly related to the fact that d depends on ε and, hence, both are playing the role of
scale factor or resolution level: the finer is the scale at which the SmBP is considered,
the smaller is ε and the bigger is d.

Despite the fact that in (24) a kind of intensity term appears explicitly, i.e. fd, it is
not the intensity of the SmBP as intended in (2), because of the relation between d and
ε. Besides, it is not possible to extract from fd the dependence on ε unless additional
hypothesis on the process. Remark 10 provides a family of processes for which (24)
reduces to (2).

Remark 10 Assume that X is a Gaussian process. Then, under the hypothesis of
Theorem 8, we have

ϕ(x, ε) ∼ exp

−1

2

∑
j≤d

x2
j

λj

 εd

2d/2Γ (d/2 + 1)
∏
j≤d
√
λj
.

The latter is asymptotically equivalent to (2) with

Ψ(x) = exp

−1

2

∞∑
j=1

x2
j

λj

 , for any x ∈ L2
[0,1]

and it is not null if and only if x belongs to RKHS(X), see (12). The same arguments
apply, whenever the PCs are independent each one with density belonging to a subfamily
of the exponential power (or generalized normal) distribution (see e.g. [11]), that is
proportional to exp

{
−
(
|xj |/

√
λj
)p}

, with p > 0. In this case, Ψ is well-defined by

Ψ(x) = exp

−1

2

∞∑
j=1

(
|xj |√
λj

)p , for any x ∈ L2
[0,1]

11



and, it is not null whenever x is in

H(p) =

x ∈ L2
[0,1] :

∞∑
j=1

(
|xj |/

√
λj

)p
<∞

 .

Moreover, it holds H(q) ⊆ RKHS(X) ⊆ H(p) with 0 < q ≤ 2 ≤ p.

1.4 Weakening the eigenvalues decay rate

Theorem 8 and, in particular, the form of the right–hand side of (24) depend strongly
on the emphasized eigenvalues trade-off provided by (20). On the other hand, ex-
ploiting the asymptotic behaviour of Vd, similar results can be obtained weakening
such eigenvalues decay rate. In particular, consider the following decays and their
relationships:

Lemma 11 Consider the eigenvalues {λj}∞j=1 and the following decay rates

• “hyper–exponential”:

d

 ∑
j≥d+1

λj

∑
j≤d

1

λj

 = o (1) , as d→∞. (20)

• “super–exponential”:

λd+1/λd → 0, as d→∞ (25)

or, equivalently, λ−1
d

∑
j≥d+1 λj → 0 (as d→∞).

• “exponential”: there exists a positive constant C so that

λ−1
d

∑
j≥d+1

λj < C, for any d ∈ N. (26)

The following implications hold (20) ⇒ (25) ⇒ (26).

It is easy to show that vice versa does not hold: for instance, consider λd+1 =
(ln(d + 1))−(d+1) with d ≥ 1 to prove that (20) 6⇐ (25), while Remark 12 leads to
(25)6⇐ (26).

Remark 12 Suppose that λj = exp{−βj} for j ≥ 1 and some β > 0. Then {λj}j≥1

has exponential decay according to (26). In fact, since λj+1/λj = e−β, we have

λ−1
d

∑
j≥d+1

λj =
∑
j≥d+1

λd+1

λd
. . .

λj
λj−1

=
∑
j≥d+1

e−β(j−d) =
∑
j≥1

e−βj = C.

In this case, Theorem 13 applies instead of Theorem 8.

The following Theorem holds.

12



Theorem 13 Consider hypothesis of Theorem 2 and assumption (11). Thus, as ε
tends to zero, it is possible to choose d(ε) diverging to infinity so that:

• in the super–exponential case

ϕ(x, ε) ∼ fd (x1, . . . , xd) exp

{
1

2
d
[
log(2πeε2)− log(d) + o(1)

]}
. (27)

• in the exponential case

ϕ(x, ε) ∼ fd (x1, . . . , xd) exp

{
1

2
d
[
log(2πeε2)− log(d) + δ(d, α)

]}
, (28)

where δ(·, ·) is such that limα→∞ lim sups→∞ δ(s, α) = 0 and α is a parameter
chosen so that λ−1

d ε2 ≤ α2.

Proof. Given results in Theorem 2, thesis holds using same arguments as in [17,
Proof of Theorem 4.2.]: the idea is to combine together (14), the Stirling expansion of
the Gamma function in Vd and the (super–)exponential eigenvalues decay.

In other words, as d diverges to infinity, for slower than (20) eigenvalues decay
arguments of Theorem 8 do not always apply and modifications of the asymptotic
approximation ϕ(x, ε) ∼ fd(x)Vd(ε) are required. In fact, if the decay is not too
slow, such as in the (super–)exponential cases, the fast decay to zero of Vd(ε) com-
pensate the shortcoming and drive the approximation to the slightly different form
ϕ(x, ε) ∼ fd(x)φ(ε) (see Theorem 13). For what concern slower rates of convergence
the theoretical problem is still open, even if a pragmatic point of view may be adopted
since “nonparametric methods, where the notion of a functional–data density is typi-
cally employed, have much lower performance and so are less attractive and less likely
to be used” (see [17]).
Moreover, note that in the (super–)exponential setting Remark 10 still holds with
straightforward modifications.

Remark 14 As already pointed out in the introduction, the use of the principal com-
ponent basis contrasts with (2) since the latter should be basis independent. From a
theoretical point of view, results presented so far still hold whenever the Karhunen–
Loève basis is replaced by an orthonormal basis of the Hilbert space, say {ξj}∞j=1, for
which the sequence {λj}∞j=1 has an (hyper– or super– or) exponential decay (see The-

orem 13), where E[θ2
j ] = λj and θj = 〈X − µX , ξj〉; in other words, the variance

along the directions ξj should decay sufficiently fast. In this view, by construction, the
Karhunen–Loève expansion associated to the RC X provides for {λj}∞j=1 the best decay
rate and then it is, in this sense, the optimal one.

2 Estimation of the joint distribution of the prin-

cipal components

To make the factorization results (24), (27), (28) usable for practical purposes, one
has to introduce an estimate of the density fd, with d ≥ 1 integer, from a sample of

13



RCs {Xi, i = 1, . . . , n} which we suppose i.i.d. as the RC X. From a theoretical point
of view, if the sequence of eigenvalues {ξj}∞j=1 was known, one should consider the

empirical version of the vector of the first d principal components θi = (θ1i, . . . , θdi)
′ ∈

Rd, with θji = 〈Xi − E [Xi] , ξj〉, and then, with an abuse of notations (we drop the
dependence on d in the density estimators and we use x both as an element of the
Hilbert space and as its d–dimensional projection in Rd since its meaning is clear from
the context), to introduce the classical kernel density estimate of fd as follows:

fd,n (Πdx) = fn (x) =
1

n

n∑
i=1

KHn (‖Πd (Xi − x)‖) (29)

where KHn (u) = det (Hn)−1/2K
(
H
−1/2
n u

)
, K is a kernel function and, Hn = Hnd is

a symmetric semi-definite positive d× d matrix. In practice (29) define only a pseudo-
estimate for fd: indeed, the covariance operator Σ and then the sequence {ξj} are
unknown. Thus, to operationalize these pseudo-estimates it is necessary to consider
the estimates θ̂i and Π̂d of θi and Πd respectively. In this view, consider

Xn (t) =
1

n

n∑
i=1

Xi(t), and Σ̂n[·] =
1

n

n∑
i=1

〈Xi −Xn, ·〉(Xi −Xn)

being the sample versions of µX and Σ respectively. The eigenelements of Σ̂n provide
an estimation for {λj , ξj}∞j=1 of Σ, as well as 〈Xi − Xn, ξ̂j〉 = θ̂ji estimates θj (the
asymptotic behaviour of these estimators has been widely studied; e.g. [10]). Thus,
plugging the estimates of the principal components (or of the eigen-projectors) in (29),
we get (with some abuse of notations) the kernel density estimator:

f̂d,n

(
Π̂dx

)
= f̂n (x) =

1

n

n∑
i=1

KHn

(∥∥∥Π̂d (Xi − x)
∥∥∥) , Π̂dx ∈ Rd. (30)

If, from a computational point of view, such replacement is a natural way to manage
the problem in practice, one may wonder if it can influence the rate of convergence
of the kernel estimator, or, in other words, if using f̂n instead of fn has no effect on

this rate. To answer this question, we study the behaviour of E
[
fd (x)− f̂n (x)

]2
as

n goes to infinity. For the sake of simplicity, we confine the study to the special case
Hn = h2

nI, and we suppose that the following assumptions (that are standard in the
nonparametric framework) occurred:

(A1) the density fd (x) is positive and p times differentiable at x ∈ Rd;

(A2) the sequence of windows hn is such that:

hn → 0 and
nhdn
log n

→∞ as n→∞;

(A3) the kernel K is Lipschitz, bounded, integrable density function with compact
support [0, 1];

14



(A4) the process X is bounded, i.e. there exits a positive constant M such that:

‖X‖ ≤M <∞ a.s..

Observe firstly that one can control the quadratic mean under study by intercalating
the pseudo-estimator (30); in fact, thanks to the triangle inequality

E
[
fd (x)− f̂n (x)

]2
≤ E [fd (x)− fn (x)]2 + E

[
fn (x)− f̂n (x)

]2
. (31)

About the first term on the right–hand side of (31), it is well known in the literature
(see for instance [49]) that under Assumptions (A1)–(A4), and taking the optimal
bandwidth

c1n
− 1

2p+d ≤ hn ≤ c2n
− 1

2p+d (32)

where c1 and c2 are two positive constants, one gets the minimax rate:

E [fd (x)− fn (x)]2 = O
(
n−2p/(2p+d)

)
uniformly in Rd. Therefore, it is enough to control the second addend on the right–
hand side of (31).
The following proposition, whose proof can be found in Section 5, states that, assuming
a suitable degree of regularity for the density fd depending on d, the rate of convergence
in quadratic mean of f̂n (x) towards fn (x) is negligible with respect to the one of fn (x)
to fd (x). Thus, to use the estimated principal components instead of the empirical
ones does not affect the rate of convergence.

Proposition 15 Assume (A1)–(A4) with p > (3d+ 2) /2 and consider the optimal
bandwidth (32). Thus, as n goes to infinity,

E
[
fd (x)− f̂n (x)

]2
= o

(
n−2p/(2p+d)

)
,

uniformly in Rd.

3 Small–ball probability based clustering

This section is devoted in defining a clustering procedure, whose aim is to detect the
presence of distinct groups in a dataset and assign group labels to the observations,
in a functional framework that takes advantage of the asymptotic factorization results
provided by theorems 8 and 13. In particular, the clustering procedure here imple-
mented is based on the premise that the observations may be regarded as a sample
from some underlying unknown mixture of probability measures on feature space and
that groups correspond to modes of its associated SmBP intensity. The goal then is to
find the modes of the intensity mixture and assign each observation to the “proximity
domain” of a mode.
In this view and for the sake of simplicity, this section is divided in two parts. The
first one supplies the framework and the necessary notations generalizing the classical
concept of mixture in the case of the small–ball probability. The second one concerns
the definition, in the functional setting, of the clustering algorithm.
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3.1 Small–ball probability mixture

Consider X as in Section 1. Suppose that Ω is partitioned in G (unknown) sub-sets
Ωg and let Y be a real r.v. defined by

Y (ω) =
G∑
g=1

gIΩg(ω), P (Y = g) = πg > 0,
G∑
g=1

πg = 1.

Consider the conditioned SmBP

ϕ (x, ε|g) = P (‖X − x‖ < ε | Y = g ) , g = 1, . . . , G

and its asymptotic behaviour as given by Theorem 8 (or 13) provided it holds:

ϕ (x, ε|g) ∼ fd (x|g)φ(ε), as ε→ 0, g = 1, . . . , G

where fd (x|g) is the conditioned joint density of the first d PCs θ = (θ1, . . . , θd)
′ of X

while φ(ε) is a “volume” parameter. Thanks to the total probability law it follows

ϕ (x, ε) =P (‖X − x‖ < ε) =
G∑
g=1

πgϕ (x, ε|g)

∼φ(ε)

G∑
g=1

πgfd (x|g) , as ε→ 0, (33)

that provides the small–ball mixture representation in terms of the conditional prob-
ability joint distribution of the first d PCs with mixture coefficients πg. Combining
(33) with the asymptotic behaviour of ϕ(x, ε) (provided by Theorem 8 or 13), we have
fd(x) =

∑G
g=1 πgfd (x|g). In other words, a mixture model for the SmBP can be seen

as a mixture model for fd with same weights πg, g = 1, . . . , G and, therefore in such a
context, arguments on fd apply naturally on ϕ (x, ε) and vice versa.
From the clustering point of view, typical requests concern the facts that each term of
the mixture is unimodal and that all the modes are distinguishable from the mixture.
In particular, from now on suppose that each conditioned SmBP is unimodal, in the
sense that, for any g = 1, . . . , G, fd(x|g) is unimodal for any d and, assume that, for
d large enough, all the G modes of the mixture are distinguishable (conditions to have
this are illustrated for instance in the bivariate Gaussian case in [4, 22, 28, 42]); i.e.
there exists d0 ∈ N such that, for any d ≥ d0, fd has precisely G modes, say md,g with
g = 1, . . . , G.

Remark 16 Whenever the principal components (θj |g) are mutually independent, the
joint distribution can be factorized. Moreover if fd (·|g) are specified, the approxima-
tion belongs to a full parametric, or model based, approach. For instance, if (X|g) is
a Gaussian random process with mean µg and covariance operator Σg, the principal
components (θj |g) are mutually independent with centered Gaussian distribution and
variances (λj |g) and consequently the SmBP mixture is the same as in [29] and [30]. In
the latter, authors used a maximum likelihood and expectation maximization approach
to identify the distribution parameters and hence the mixture.
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3.2 Algorithm

In view of exposed results, we can now define the following unsupervised classification
algorithm:

1. Obtain an estimate of the covariance operator and of eigenelements.

2. Fix d, compute f̂d,n (an estimation of the joint distribution density fd).

3. Look for its local maxima m̂d,g, g = 1, . . . , Ĝ.

4. Finding Prototypes: for each g in {1, . . . , Ĝ}, the g-th “prototypes” group is
formed by those Xi whose estimated PCs belong to the largest connected iso–
surface of f̂d,n that contains only the maximum m̂d,g.

5. (Optionally) Classify the unlabelled Xi with the Ĝ prototypes groups by means
of a k–NN procedure.

The remain part of this section is devoted in exploring those algorithm issues need-
ing some attention.

Dimension tuning As noticed in Remark 9, factorization theorems tie the values of
d to those of ε displaying that the notion of density changes as scale becomes finer. This
means that rather than estimate fd for a fixed value of d (that means to approximate
SmBP for fixed values of ε), one should have to consider different values of d each one
providing further insights on the process itself. Anyway, from a practical point of view,
attention must be paid in tuning the feasible values of d since it should be small enough
to avoid the well–known “curse of dimensionality” in estimating nonparametrically fd
but it should be sufficiently large to guarantee a good Karhunen–Loève approximation.
To take care of the latter, d can be chosen so that the fraction of explained variance
of the correspondent first d components is greater than a fixed threshold c, in general
larger than c ≥ 0.9; i.e. FEV criterion:

∑
j≤d λj/

∑
j≥1 λj ≥ c ≥ 0.9. With such cri-

terion, the (hyper– or super– or) exponential eigenvalues decay likely provides small
values of d ridding the algorithm of the curse of dimensionality as well. In this view,
the distribution free approach (provided by a nonparametric estimation of fd) is more
general than a full parametric one; see also Remark 16.
Moreover, it is worth noticing the case of a finite dimensional process that clearly satis-
fies (20) and for which literature has provided so far different test procedure strategies
in determining the correct dimension; e.g. [26].

Remark 17 The algorithm here presented take advantage of some visualization tools
already developed in graphics libraries, such as contour lines that are typically available
up to three dimensions. Such cases are the most interesting from the theoretical point
of view, indeed, if the FEV criterion was fulfilled only for d greater than three, it might
mean that the eigenvalues decay is not sufficiently fast to guarantee the applicability
of the factorization theorems 8 and 13 from which the algorithm is derived. Anyway,
whenever d is greater than three, the interested reader can consider to slightly modify
the algorithm by adapting similar multivariate density based clustering procedure as
the ones described in [31, 47] where authors mix single-linkage procedure with non
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parametric estimations of the density, or in [3, 38] that exploit Delaunay diagrams
properties; in any case, all of them explicitly (if using kernel estimation) or implicitly
(if using k–NN) suffer from high dimensions settings.

Nonparametric estimation In order to estimate fd, consider f̂d,n defined as in
(30) that is the classical multivariate Nadaraya–Watson density estimator and, com-
puted on a grid of the d–dimensional factor space. An important task in the nonpara-
metric estimation regards the bandwidth selection. In fact, even assuming indepen-
dence for PCs (as in [17]), the kernel density approach require a selection procedure
for the bandwidth matrix (which identifies an ellipse whose axes are, in general, not
parallel to main directions) since the estimated number of clusters depends on it: the
larger is |H|, the “smoother” is f̂d,n, the smaller is the number of modes. In [19–21]
authors show that a diagonal bandwidth matrix (identifying an ellipse whose axes are
along the orthogonal directions decomposing the process) is most useful when there is
large probability mass oriented along the coordinate directions (as is in the case of PCs
with fast eigenvalues decay rate) as well as in mixture detections. Thus, unless fur-
ther considerations on the process/sample, an optimal choice is to consider a diagonal
bandwidth matrix whose non–null entries are the univariate bandwidth provided by [45,
p.48]. Anyway, as usual in the nonparametric density estimation framework, different
choices for the bandwidth may be considered in order to catch different phenomenon
scales at the chosen resolution level d.

Remark 18 Alternatively to the nonparametric approach, a k–NN density estimation
could be considered. In this case, after having paid attention to the tuning of k (with
remarks similar to those above concerning the bandwidth selection), one can take ad-
vantage of the computationally simply estimator. Nevertheless, whenever the empirical
PCs scores are considered, the consistency of such estimator as well as its rate of con-
vergence should be studied and, as usual in a k–NN framework, difficulties may arise
in handling the randomness of the radius of the k-th nearest neighbourhood.

Modes and Prototypes Density estimates tend to have spurious modes caused
by sampling variability. The varying of the bandwidth matrix as explained before may
help in detecting them. Another way is to look for f̂d,n local maxima whose estimate
density is greater than all other points in the grid within a fixed distance, say r (the
larger is r the less likely the point is recognized as a mode). (Alternatively, in a
multivariate framework, modes can be estimated as in [1].) At this point the algorithm
provides Ĝ estimated modes, namely m̂d,g, g = 1, . . . , Ĝ. For each g in {1, . . . , Ĝ},
the g–th “prototypes” group is formed by those Xi in the sample whose estimated
PCs belong to the largest connected iso–surface of f̂d,n that contains only the local
maximum m̂d,g.

Classify the unlabelled sample curves At this stage, even thought the main
goal of clustering is reached (indeed modes and prototypes already display the struc-
tural changes among data that cluster procedure is looking for), one may be interested
in classify even those curves of the sample that, at the previous stage, are not classified

18



5 10 15

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Growth curves

Age

H
e
ig

h
t 
(c

m
)

5 10 15

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Growth curves (girls)

Age

H
e
ig

h
t 
(c

m
)

5 10 15

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

Growth curves (boys)

Age

H
e
ig

h
t 
(c

m
)

Figure 1: Smoothed Growth Curves: whole dataset (left), girls only (center), boys only
(right).

as prototypes. To do this, the algorithm adopted a k–NN (with k = 1) procedure to
label such sample curves: each unclassified curve is labelled with the same label of the
nearest group.

Remark 19 It is worth to note that once modes are computed, prototypes (i.e. those
curves whose PCs belong to some largest connected iso–surface containing only one
mode) are equivalently classified by means of a mode–seeking algorithm: shift data
PCs according to the estimated f̂d,n density gradient till the shift is sufficiently small,
i.e. when the shifted PCs are close to some mode (see, for instance, [8, 12, 18, 33,
50] and references therein). In view of this similarity and alternatively to the k-NN
strategy to classified the unlabelled sample curves, one may shift data PCs according to
the estimated f̂d,n density gradient till they belong to the largest connected component
associated to a mode from which the unclassified curves inherits the label.
Another classification strategy for the unlabelled curves can be derived adapting method
proposed in [3, 38].

4 Real data illustration

In this section we illustrate an application of the clustering algorithm proposed in
Section 3 to the well-known Berkeley growth dataset (see [48]), in order to show how
the method works in practice, the cognitive support on the studied phenomenon it
could bring, and what kind of practical problems could occur.

Dataset illustration The dataset contains stature measurements for 54 girls and
39 boys, aged from 1 to 18 years, and observed in 31 (not equispaced) discretization
points. To obtain the growth curves we use in the subsequent analysis, the original raw
data are preprocessed: a monotone smoothing method was fitted to each individual set
of discretized data (for more details see [39]). The final sample of curves is visualized
in Figure 1.

This dataset is a benchmark in the functional data analysis framework and it has
been used, for instance, in regression modelization (see for instance, [13]), supervised
classification and clustering (see for instance, [43] and [30]). In this latter the aim of
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j λ̂j
∑

i≤j λ̂i/
∑

i λ̂i
1 36.2977 81.67
2 6.3159 95.88
3 1.2440 98.67
4 0.3795 99.53
5 0.1086 99.77
6 0.0568 99.90

Table 1: Estimated first six eigenvalues λ̂j and correspondent explained variance.

the exercise is to retrieve the gender of subjects: sex is an hidden variable which is
used a posteriori to assess clustering performances. In such literature, the problem
to carry out a registration step before clustering, in order to remove amplitude and
phase variabilities of curves, is debated. In fact, there are two opposing positions:
in some works a registration step is recommended and even merged in the clustering
algorithm (see e.g. [37] and [43]), in some others, it is believed that amplitude and phase
variation of curves are typical features that allow to characterize the clusters, and then
their removal could lead to a deterioration of the performances of the algorithm (see
[30]). Since we agree with this second line of thought (also supported by the empirical
evidences on clustering abilities), we do not perform any data registration.

Functional Principal Component Analysis The first step of our application
is to perform a principal components analysis. Table 1 collects the first six estimated
eigenvalues of the (estimated) covariance operator. One can note that the spectrum is
rather concentrate: the first three PCs explains more than 98% of the total variance,
and thus, according to Remark 17 it is sufficient limit our analysis to d ≤ 3. About the
behaviour of the estimated eigenvalues, one may wonder if their decay is fast enough
to guarantee the factorization of the SmBP as provided by theorems 8 and 13 and,
hence, to justify the use of the joint density of the considered scores. In fact, Figure 2
heuristically shows that eigenvalues decay is of type λj = e−βj and hence exponential
as well, see Remark 12.

To conclude the first step in our analysis, we provide an interpretation of the con-
tribution of the first three CPs: a useful graphical tool is, besides the representation
of the estimated eigenfunctions, to plot the estimated mean curve plus and minus a
suitable multiple of each estimated eigenfunction (see e.g. [39]). To obtain a good illus-
tration and, at the same time, taking the weight of each PC into account, we displayed

µ̂ ± 3/2

√
λ̂j ξ̂j (see Figure 3). The first eigenfunction, which does not present sign

change, appears monotonic for ages up to 15 and almost constant for greater ages: it
describes a “fan effect” in the first part of life and represents only a vertical shift in
the remainder. As a consequence, the scores θ̂1 are highly correlated with the integral
of the growth curves. The second and the third eigenfunctions are connected with the
pubertal spurt, and then they appear very important in the clustering exercise.
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Clustering In what follow, we illustrate the results of the clustering method for
the case studied: the analysis is performed varying the main parameters, that is, the
dimension d and the bandwidth matrix H in the kernel density estimation. About
d, according to the above comments on the behaviour of the estimated spectrum, we
use d = 2 and d = 3. According to Section 3, the matrix H is chosen diagonal and,
to better appreciate the role of the smoothing parameters in revealing an underlying
structure, we apply a shrinkage factor δ ∈ (0, 1). In this way, δH may be tuned to
allowing us to pass from a macro–scale to a micro–scale analysis (from large to small
δ).

Consider first the case d = 2. If one uses the bandwidth selected automatically
as illustrated in Section 3, one obtains two prototypes groups to which the k–NN
procedure connects the remaining points to create two clusters that overlap (almost
perfectly) the groups corresponding to the boys and the girls: only 1 male is assigned
to the group containing mainly female, and 4 females are assigned to the cluster of
males, with a correct classification rates of 94.6% of retrieved subjects respect to the
latent variable sex. When one applies a coefficient δ smaller than 1, the micro–scale
analysis reveals the existence of sub-group among the girls: with 0.5 ≤ δ ≤ 0.8 all the
boys are assigned to a specific cluster, while a group of 8 little girls is separated from
the others. Figure 4 illustrates the factorial plane, the evolution of prototype groups
obtained using the automatic selected bandwidth and the same multiplied by δ = 0.8,
and the corresponding modal curves.

We treat now the case d = 3. The evolution of the prototypes and of the cor-
responding modal curves, varying the coefficient δ (with δ = 0.7, 0.6, 0.5 and 0.4) is
illustrated in Figure 5. One can observe that when δ is relatively large the algorithm
produces a first segmentation separating the boys from the girls, then, for smaller val-
ues of δ, it divides the group of boys in sub-groups. More in detail, for δ = 0.8 or 0.9
only girls are completely recognized, whereas only 20 boys are separated in a second
cluster. Reducing further δ, the composition of the two groups fit better with the sex
of subjects: if one considers the sex as a latent variable, the correct classification rate
is 90.3% when δ = 0.7 and 97.9% when δ = 0.6 (in this case, only 2 girls are not recog-
nized). This latter result outperforms the ones obtained by using competitive cluster
algorithms (see results collected in [30, Table 1]) and, moreover, it confirms that the
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Figure 3: Top-left : The first three eigenfunctions. Top-right and Bottom: The mean growth
curve perturbed by adding (+) and subtracting (−) a multiple (1.5

√̂
λj) of each eigenfunction

ξ̂j (j = 1, 2, 3).
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Figure 4: Prototype level-sets and modal curves for δ = 1, 0.8 (from top to bottom) when
d = 2.

registration step is not useful for the curves under analysis. Observing carefully the
prototypes corresponding to the case δ = 0.6, it appears that the level set that defines
the clusters of boys includes de facto two more homogeneous sub-groups: this suggests
to deepen the analysis by reducing further the shrinkage coefficient. Hence, passing
to δ = 0.5 and δ = 0.4, the group of boys is segmented in three parts that one could
define small, normal, and extra–size. Finally, repeating the procedure for very small
δ (δ = 0.3), the algorithm detects also the same sub-group of girls found in the case
d = 2 when δ = 0.8.

In conclusion of this Section, one can remark that if the goal of the method was to
retrieve the gender of subjects, the proposed algorithm provide the best classification
results, with a suitable choice of the smoothing parameters, among clustering competi-
tors. On the other hand, if the goal was to reveal particular homogeneous structure
in the data, the introduced method provide a feasible and interpretable tool that can
underline some specificities within the group of boys and the one of girls.

5 Proofs

This section collects proofs of results exposed above.
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Figure 5: Prototype level-sets and modal curves form macro–scale to micro–scale analysis
with δ = 0.7, 0.6, 0.5, 0.4 (from top to bottom) when d = 3.
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5.1 Proof of Theorem 2

We are interested in the asymptotic behaviour, whenever ε tends to zero, of the SmBP
of the process X, that is

ϕ(x, ε) = P (‖X − x‖ ≤ ε) = P
(
‖X − x‖2 ≤ ε2

)
= P

+∞∑
j=1

〈X − x, ξj〉2 ≤ ε2

 = P

+∞∑
j=1

(θj − xj)2 ≤ ε2

 , as ε→ 0

Let S1 =
∑

j≤d (θj − xj)2 and S = 1
ε2
∑

j≥d+1 (θj − xj)2 be the truncated series and
the scaled version of the remainder respectively. Thus, the SmBP is

ϕ(x, ε) = P
(
S1 + ε2S ≤ ε2

)
= P

(
S1 ≤ ε2 (1− S)

)
= E

[
E
[
S1 ≤ ε2 (1− S)

∣∣∣S]]
= E [ϕ(S|x, ε, d)] =

∫ 1

0
ϕ(s|x, ε, d)dG (s) . (34)

where G is the cumulative distribution function of S. At first, for any s ∈ (0, 1),
let us consider ϕ(s|x, ε, d), that is the SmBP about Πdx of the process ΠdX in the
space spanned by {ξj}j≤d. In terms of fd (·), the probability density function of ϑ =

(ϑ1, . . . , ϑd)
′, it can be written as

ϕ(s|x, ε, d) =

∫
D
fd (ϑ) dϑ,

where D =
{
ϑ ∈ Rd :

∑
j≤d (ϑj − xj)2 ≤ ε2 (1− s)

}
. Note that D is an d–dimensional

ball centered about Πdx = (x1, . . . , xd) with radius ε
√

1− s. Now, consider the Taylor
expansion of f = fd about Πx = Πdx with Lagrange remainder,

f (ϑ) =f(x1, . . . , xd) + 〈ϑ−Πx,∇f(x1, . . . , xd)〉

+
1

2
(ϑ−Πx)′Hf (Πx+ (ϑ−Πx)t) (ϑ−Πx),

for some t ∈ (0, 1) and with Hf denoting the Hessian matrix of f . (In general, t
depends on ϑ − Πx, but we are not interested in the actual value of it because the
boundedness of the second derivatives of f allows us to drop, in what follows, those
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terms depending on t). Then we can write

ϕ(s|x, ε, d) =

∫
D

(
f(x1, . . . , xd) + 〈ϑ−Πx,∇f(x1, . . . , xd)〉

+
1

2
(ϑ−Πx)′Hf (Πx+ (ϑ−Πx)t) (ϑ−Πx)

)
dϑ

=f(x1, . . . , xd)

∫
D
dϑ+

∫
D
〈ϑ−Πx,∇f(x1, . . . , xd)〉 dϑ

+
1

2

∫
D

(ϑ−Πx)′Hf (Πx+ (ϑ−Πx)t) (ϑ−Πx)dϑ

=f(x1, . . . , xd)I +
1

2

∫
D

(ϑ−Πx)′Hf (Πx+ (ϑ−Πx)t) (ϑ−Πx)dϑ (35)

where I = I (s, ε, d) denotes the volume of the d–dimensional ball D that is

I =
εdπd/2

Γ (d/2 + 1)
(1− s)d/2

and, the addend
∫
D 〈ϑ−Πx,∇f(x1, . . . , xd)〉 dϑ is null since 〈ϑ−Πx,∇f(x1, . . . , xd)〉

is a linear functional integrated over the symmetric – with respect to the center
(x1, . . . , xd) – domain D. Thus from (35) it follows

|ϕ(s|x, ε, d)− f(x1, . . . , xd)I| =

=

∣∣∣∣∣∣12
∫
D

∑
i≤d

∑
j≤d

(ϑi − xi)(ϑj − xj)
∂2f

∂ϑi∂ϑj
(Πx+ (ϑ−Πx)t) dϑ

∣∣∣∣∣∣
≤ 1

2
C1f(x1, . . . , xd)

∣∣∣∣∣∣
∑
i≤d

∑
j≤d

∫
D

(ϑi − xi)(ϑj − xj)√
λi
√
λj

dϑ

∣∣∣∣∣∣
=

1

2
C1f(x1, . . . , xd)

∣∣∣∣∣∣
∑
j≤d

∫
D

(ϑj − xj)2

λj
dϑ

∣∣∣∣∣∣
where C1 is given by (5) and the latter equality holds because symmetry arguments
lead to

∫
D(ϑi−xi)(ϑj−xj)dϑ = 0 for i 6= j. Furthermore, definition of D and s ∈ (0, 1)

guarantee that

|ϕ(s|x, ε, d)− f(x1, . . . , xd)I| ≤
1

2
C1f(x1, . . . , xd)

∑
j≤d

1

λj

∣∣∣∣∫
D
ε2(1− s)dϑ

∣∣∣∣
≤ε

2

2
C1f(x1, . . . , xd)

∑
j≤d

1

λj

 I. (36)

Come back to the SmBP (34),

ϕ(x, ε) =

∫ 1

0
f(x1, . . . , xd)IdG (s) +

∫ 1

0
(ϕ(s|x, ε, d)− f(x1, . . . , xd)I) dG (s) , (37)
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and note that, thanks to (36) and because d is fixed, the second addend in the right–
hand side of (37) is infinitesimal with respect to the first addend∣∣∣∣∣

∫ 1
0 (ϕ(s|x, ε, d)− f(x1, . . . , xd)I) dG (s)∫ 1

0 f(x1, . . . , xd)IdG (s)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
ε2

2 C1f(x1, . . . , xd)
(∑

j≤d
1
λj

) ∫ 1
0 IdG (s)

f(x1, . . . , xd)
∫ 1

0 IdG (s)

∣∣∣∣∣∣ =
C1

2

∑
j≤d

1

λj

 ε2.

Noting that ∫ 1

0
I(s, ε, d)dG(s) =

εdπd/2

Γ (d/2 + 1)
E
[
(1− S)d/2 I{S≤1}

]
,

we have

|ϕ(x, ε)− ϕd(x, ε)| ≤
C1

2

∑
j≤d

1

λj

 ε2ϕd(x, ε)

where,

ϕd(x, ε) = f(x1, . . . , xd)
εdπd/2

Γ (d/2 + 1)
E
[
(1− S)d/2 I{S≤1}

]
. (7)

Thus, since d is fixed, as ε tends to zero,

ϕ(x, ε) =

∫ 1

0
ϕ(s|x, ε, d)dG (s) =ϕd(x, ε) + o

(
ϕd(x, ε)

f(x1, . . . , xd)

)
or, equivalently, ϕ(x, ε) ∼ ϕd(x, ε) that concludes the proof.

5.2 Proofs of Proposition 3 and Proposition 5

In this section we consider results concerning asymptotics behaviour of S (Proposi-

tion 3) and E
[
(1− S)d/2 I{S≤1}

]
(Proposition 5).

Proof of Proposition 3. Let us first prove that S converges to zero in probability.
For any k > 0, by Markov inequality and, thanks to Equation (11),

P (|S| > k) = P (S > k) = P

 1

ε2

∑
j≥d+1

(θj − xj)2 > k


≤

E
[

1
ε2
∑

j≥d+1 (θj − xj)2
]

k2
≤ C2

k2

∑
j≥d+1 λj

ε2
. (38)

Thanks to (13) we get the converges in probability. Since S = S(x, ε, d) is non–
increasing when d increases,

P

(
sup
j≥d+1

|S(x, ε, j)− 0| ≥ k

)
= P (S(x, ε, d+ 1) ≥ k)
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holds for any k > 0 and any x. This fact, together with (38), guarantees the almost
sure convergence of S to zero (e.g. [44, Theorem 10.3.1]) as ε tends to zero. Moreover,
the monotone convergence theorem guarantees the L1 convergence.

Finally, in order to prove (14), Hölder inequality guarantees that E
[
(1− S)d/2 I{S≤1}

]2/d

is a non–decreasing monotone sequence with respect to d whose values are in [0, 1] and
eventually bounded away from zero.
Proof of Proposition 5. At first note that

0 ≤ E
[
(1− S)d/2 I{S≤1}

]
≤ 1

then, after some algebra, thanks to Bernoulli inequality (i.e. (1+s)r ≥ 1+rs for s ≥ −1
and r ∈ R \ (0, 1)), Markov inequality and Assumption (11), we have (for any d ≥ 2)

0 ≤1− E
[
(1− S)d/2 I{S≤1}

]
≤ 1− E

[(
1− d

2
S

)
I{S≤1}

]

≤E
[
d

2
S I{S≤1}

]
≤ E

 d

2ε2

∑
j≥d+1

(θj − xj)2

 ≤ C2d

2ε2

∑
j≥d+1

λj .

Choosing d according to (16) the thesis follows.

5.3 Proof of Proposition 15

Recall that, as did in Section 2, we abuse notations dropping the dependence on d
in the density estimators f and f̂ and, we use x both as an element of the Hilbert
space and as its d–dimensional projection in Rd since its meaning will be clear from
the context.

The proof of Proposition 15 uses similar arguments as in [6] and then some steps
are only sketched. In the following C denotes a general positive constant.
Since Hn = h2

nI, it holds KHn (u) = h−dn K (u). Denoting:

Sn (x) =

n∑
i=1

K

(
‖Πd (Xi − x)‖

hn

)
and Ŝn (x) =

n∑
i=1

K


∥∥∥Π̂d (Xi − x)

∥∥∥
hn


the pseudo-estimator and the estimator write respectively:

fn (x) =
Sn (x)

nhdn
and f̂n (x) =

Ŝn (x)

nhdn

and hence:

E
[
fn (x)− f̂n (x)

]2
=

1

(nhdn)
2E
[
Sn (x)− Ŝn (x)

]2
.

Setting

Vi = ‖Πd (Xi − x)‖ , V̂i =
∥∥∥Π̂d (Xi − x)

∥∥∥ ,
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and considering the events

Ai = {Vi ≤ hn} , Bi =
{
V̂i ≤ hn

}
we get the decomposition:

Sn (x)− Ŝn (x) =
n∑
i=1

[
K

(
Vi
hn

)
−K

(
V̂i
hn

)]
IAi∩Bi

+

+

n∑
i=1

K

(
Vi
hn

)
I
Ai∩Bi

−
n∑
i=1

K

(
V̂i
hn

)
I
Ai∩Bi

.

Since (a+ b)2 ≤ 2a2 + 2b2, it holds:

E
[
Sn (x)− Ŝn (x)

]2
≤2E

[
n∑
i=1

(
K

(
Vi
hn

)
−K

(
V̂i
hn

))
IAi∩Bi

]2

+ 4E

( n∑
i=1

K

(
Vi
hn

)
I
Ai∩Bi

)2

+

(
n∑
i=1

K

(
V̂i
hn

)
I
Ai∩Bi

)2
 .
(39)

Consider now the first addend in the right-hand side of (39): Assumption (A3), the

fact that
∣∣∣Vi − V̂i∣∣∣ ≤ ∥∥∥Πd − Π̂d

∥∥∥
∞
‖Xi − x‖, where ‖·‖∞ denotes the operator norm,

and Assumption (A4) lead to:

E

[
n∑
i=1

(
K

(
Vi
hn

)
−K

(
V̂i
hn

))
IAi∩Bi

]2

≤ CE

∥∥∥Πd − Π̂d

∥∥∥2

∞

(
n∑
i=1

IAi∩Bi

)2


Thanks to the Cauchy-Schwartz inequality we control the previous bound by:E
[∥∥∥Πd − Π̂d

∥∥∥4

∞

]
E

( n∑
i=1

IAi∩Bi

)4
1/2

On the one hand, using similar arguments as in the proof of Theorem 2.1 (iii) in [6], it
holds (

E
[∥∥∥Πd − Π̂d

∥∥∥4

∞

])1/2

= O

(
1

n

)
.

On the other hand, we note that the r.v.
∑n

i=1 IAi∩Bi
is Binomial distributed with

parameters n and P = P
(
{Vi ≤ hn} ∩

{
V̂i ≤ hn

})
. Since, when n goes to infinity,

P ∼ h2d
n and the raw fourth moment of Bin (n, P ) is asymptotically equivalent to

(nP )4, it follows

E

( n∑
i=1

IAi∩Bi

)4
 ∼ nh8d

n .
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Finally, combining previous results, we obtain:

1

(nhdn)
2E

[
n∑
i=1

(
K

(
Vi
hn

)
−K

(
V̂i
hn

))
IAi∩Bi

]2

≤ Ch
2(d−1)
n

n
(40)

that goes to zero when n→∞ for any d ≥ 1.
We work now on the second addend in the right-hand side of (39). We consider only
the term:

E

[
n∑
i=1

K

(
Vi
hn

)
I
Ai∩Bi

]2

(41)

because the behaviour of the other is similar. Define the sequence κn so that κn → 0
as n→∞, the following inclusions hold:

Ai ∩Bi = {Vi ≤ hn} ∩
{
V̂i > hn

}
= ({hn (1− κn) < Vi ≤ hn} ∪ {Vi ≤ hn (1− κn)}) ∩

{
V̂i − Vi > hn − Vi

}
⊆ {hn (1− κn) < Vi ≤ hn} ∪

{
Vi ≤ hn (1− κn) , V̂i − Vi > hn − Vi

}
⊆ {hn (1− κn) < Vi ≤ hn} ∪

{
V̂i − Vi > κnhn

}
.

The latter result and Assumptions (A3) and (A4) allow to control (41) by

E

[
n∑
i=1

IAi∩Bi

]2

≤ 2E

[
n∑
i=1

I{hn(1−κn)<Vi≤hn}

]2

+ 2E

[
n∑
i=1

I{‖Π̂d−Πd‖>Cκnhn}

]2

.

About the first term in the second member of the latter, the Cauchy-Schwartz inequal-
ity gives:

E

[
n∑
i=1

I{hn(1−κn)<Vi≤hn}

]2

≤ n2P (hn (1− κn) < V ≤ hn) .

Since P (hn (1− κn) < V ≤ hn) ∼ hdn

(
1− (1− κn)d

)
, performing a first order Taylor

expansion of (1− κn)d in κn = 0, we get asymptotically:

E

[
n∑
i=1

I{hn(1−κn)<Vi≤hn}

]2

≤ Cn2hdnκn.

Similarly, for what concerns the other addend, we have

E

[
n∑
i=1

I{‖Π̂d−Πd‖>κnhn/M}

]2

≤ n2P
(∥∥∥Π̂d −Πd

∥∥∥ > Cκnhn

)
with

P
(∥∥∥Π̂d −Πd

∥∥∥ > Cκnhn

)
= O

(
exp

(
−nh2

nκ
2
n

))
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thanks to [6, Theorem 2.1 (i)].
Combining the previous results we obtain:

1

(nhdn)
2E

[(
n∑
i=1

K

(
Vi
hn

)
I
Ai∩Bi

)]2

= O

(
κn
hdn

)
+O

(
1

nh
2(d+1)
n κ2

n

)
.

If we choose κn =
(
nhd+2

n

)−1/3
, with nh

2(2d+1)
n →∞, as n→∞, we obtain:

E

( n∑
i=1

K

(
Vi
hn

)
I
Ai∩Bi

)2

+

(
n∑
i=1

K

(
V̂i
hn

)
I
Ai∩Bi

)2
 ≤ C ( 1

nh
2(2d+1)
n

)1/3

. (42)

In conclusion, (40) and (42) lead to

1

(nhdn)
2E
[
Sn (x)− Ŝn (x)

]2
= O

(
h

2(d−1)
n

n

)
+O

( 1

nh
2(2d+1)
n

)1/3


which, when one chooses the optimal bandwidth (32), is equal to

O
(
n−(3d+2p−2)/(2p+d)

)
+O

(
n−(2p−3d−2)/(3(2p+d))

)
(43)

provided that 3d + 2p − 2 > 0 and 2p − 3d − 2 > 0, that is, for each d ≥ 1, taking
p > (3d+ 2) /2. A direct computation allows to show that (43) is definitively negligible
compared to the “optimal bound” n−2p/(2p+d), for any d ≥ 1.
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