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Abstract

We study an unsupervised and a supervised classification approaches for Hilbert
random curves. Both rest on the use of a surrogate of the probability density which
is defined, in a distribution-free mixture context, from an asymptotic factorization of
the small-ball probability. That surrogate density is estimated by a kernel approach
from the principal components of the data. The paper focuses on the illustration
of the classification algorithms and the computational implications, with particular
attention to the tuning of parameters involved. Some asymptotic results are sketched.
Applications on simulated and real datasets show how the proposed methods work.

Keywords. density based clustering; discriminant Bayes rule; Hilbert data; small–ball
probability mixture; functional principal component; kernel density estimate.

Introduction

In multivariate classification problems, whether they are supervised or unsupervised, the role
of joint density, or better, of its estimate, plays a central role. In order to make it clear, one
has just to think to the literature about the model based clustering approaches, and recall
that all the discriminant methods resting on the so-called Bayes rule require an estimation
of the joint density in each group (for recent developments, see for instance [14]).

When one deals with data belonging to functional spaces (for a general introduction
on this topic, one can refer to monographs [11], [17] and [24], and the recent book [3]),
the dimensionality problem arises immediately, and, as a consequence, a probability density
function generally, does not exist (see [4]). Hence, a direct extension of density oriented
classical multivariate classification approaches to functional data can not be implemented:
usually a reduction of dimensionality, based on projection over suitable finite subspaces, is
a preliminary step put in place to tackle the problem. This route is followed for instance by
[20], where model based clustering methods are proposed, and by [19] and [25] in defining
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a discriminant approach: the general idea is to put a suitable density mixture model over
the coefficients of the representation of functional data in the finite subspace, admitting that
such model may summarize the distribution of underlying process. It is worthy to note that
also other reduction dimensionality approaches are possible: for instance, one can recall the
techniques, which rest on the most important points, that are illustrated in [5].

Another way to proceed, that aims to work directly on the distribution of the process,
refers to the concept of surrogate (or pseudo) density. The general principle, dates back
to [13], is to factorize the small ball probability associated with the functional data, when
the radius of the ball tends to zero, as product of two terms: an “intensity term” which
depends only on the center of the ball, and a kind of “volume parameter” which depends
only on the radius. Since the first term reflects the latent structure of the distribution of the
underlying process, it represents an ideal candidate to play the role that the multivariate
density has in the finite dimensional classification methods. Theoretical conditions that al-
low such factorization when one considers Hilbert functional data in the space determined by
the basis of the Karhunen–Loève decomposition (i.e. by the eigenfunctions of the principal
components analysis), and the structure of the pseudo-density (linked to the principal com-
ponents, i.e. the coefficients of the decomposition), are discussed in [4] and then in [2], where
some assumptions are relaxed. One can observe that such idea allows to see the projective
approaches in a more general theoretical context.

To put into effect the above factorization and take advantage of the pseudo-density,
different ways are possible. A first one is to specify a suitable density model mixture for the
principal components: this full parametric approach is followed by [18] in defining a Gaussian
mixture clustering procedure. On the other hand, a full nonparametric approach is possible
as done in [12] where a k–NN procedure is proposed to estimate the pseudo-density.

In this paper we consider an intermediate approach to evaluate the pseudo-density: after
computing the first d principal components of the functional data, we obtain an estimate of
their joint density fd via the classical Parzen–Rosenblatt kernel method. We can see this
approach as semi-parametric: if on one hand, we use coefficients of the Karhunen–Loève
decomposition in defining the pseudo-density (it is not estimated directly), on the other
hand, the mixture model is not specified.

The goal of this paper is to clarify how to use the proposed method to tackle classification
problems for Hilbert data: we illustrate both a pseudo-density oriented clustering algorithm
resting on the definition of clusters as a high intensity regions from the modes of fd, and a
classifier based on the Bayes rule in the discriminant context, under suitable hypothesis on
the distributions of the mixture components. After introducing the general mixture model
and the theoretical motivations, the algorithms are illustrated in details, focusing on com-
putational aspects and on the tuning of different parameters involved (as, for instance, the
number of considered principal components, the scale of the bandwidth matrix in estimating
the joint density fd and a “mode cap” parameter whose purpose is to prevent the springing
of too much spurious modes). The study is completed with an analysis of real and syn-
tetic datasets: a special attention is paid, both in the clustering and in the discriminant
framework, to mixtures presenting non-spherical clusters.
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This paper is organised as follows. In Section 1 we introduce the mixture model and its
factorization, Section 2 is devoted to illustrate the classification algorithms (clustering and
discriminant) and to discuss the parameters used. Finally, Section 3 collects the applications
to simulated data and real cases.

1 Theoretical framework

Let X be a random element defined on the probability space (Ω,F ,P) and taking its values
in the Hilbert space L2

[0,1] endowed with the usual inner product 〈·, ·〉 and associated norm

‖ · ‖. Denote by

µX = {E [X (t)] , t ∈ [0, 1]} , and Σ [·] = E [〈X − µX , ·〉 (X − µX)]

the mean function and covariance operator of X respectively. A measure of concentration
of X is given by the small–ball probability, briefly SmBP (see [11] and reference therein),
defined as

ϕ (x, ε) = P (‖X − x‖ < ε) , x ∈ L2
[0,1], ε > 0.

Suppose that Ω is partitioned in G (unknown and finite) sub-sets Ωg and let Y be a N–valued
random variable defined by

Y (ω) =
G∑
g=1

g IΩg(ω), P (Y = g) = πg > 0,
G∑
g=1

πg = 1,

with IA the indicator of A and consider the conditioned SmBP

ϕ (x, ε|g) = P (‖X − x‖ < ε | Y = g ) , g = 1, . . . , G,

that leads to the mixture

ϕ (x, ε) =
G∑
g=1

πgϕ (x, ε|g) , x ∈ L2
[0,1], ε > 0. (1)

The latter expression is the starting point to approach model–based classification problems:
when Y is a latent variable we deal with an unsupervised classification problem focused on
the left–hand side of (1), see Section 2.1; whereas when Y is observed the model drives to
the construction of a Bayesian classifier whose starting point is the right–hand side of (1),
see Section 2.2. In both cases, instead of tackle directly (1), we want to simplify it exploiting
an approximation result sketched below (for more details see [2]). For the sake of simplicity
it is presented with respect to the process X; however the same arguments can be applied
to (X|Y = g) with g = 1, . . . , G, provided a suitable change of notation.

Consider the Karhunen–Loève expansion of X: denoting by {λj, ξj}∞j=1 the decreasing to
zero sequence of non–negative eigenvalues and their associated orthonormal eigenfunctions
of Σ, it holds

X (t) = µX (t) +
∞∑
j=1

θjξj (t) , 0 ≤ t ≤ 1,

3



where θj = 〈X − µX , ξj〉 are the so–called principal components (PCs) of X satisfying

E [θj] = 0, V ar (θj) = λj, E [θjθj′ ] = 0, j 6= j′.

From now on, without loss of generality suppose that µX = 0. Moreover, assume:

(A.1) the first d PCs θ = (θ1, . . . , θd)
′ admit a strictly positive and sufficiently smooth joint

probability density fd;

(A.2) there exists a positive constant C (not depending on d) for which

sup
d∈N

sup
i,j∈{1,...,d}

√
λiλj

|fd(ϑ)|

∣∣∣∣∂2fd(ϑ)

∂ϑi∂ϑj

∣∣∣∣ ≤ C, for any ϑ ∈ D,

where D =
{
ϑ ∈ Rd :

∑
j≤d (ϑj − xj)2 ≤ ρ2

}
for some ρ ≥ ε;

(A.3) x is an element of L2
[0,1] such that sup{x2

j/λj : j ≥ 1} <∞, with xj = 〈x, ξj〉;

(A.4) the spectrum of Σ is rather concentrate: {λj}∞j=1 decays to zero at least exponentially.

Proposition 1 Under (A.1)–(A.4), as ε tends to zero, it is possible to choose d(ε) diverging
to infinity so that:

ϕ(x, ε) ∼ fd (x1, . . . , xd)φ(d, ε). (2)

The form of φ(d, ε) depends on the eigenvalues decay; in particular:

• if {λj}∞j=1 decays exponentially

λ−1
d

∑
j≥d+1

λj < C, for any d ∈ N (3)

then

φ(d, ε) = exp

{
1

2
d
[
log(2πeε2)− log(d) + δ(d, α)

]}
,

where δ(·, ·) is such that limα→∞ lim sups→∞ δ(s, α) = 0 and α is a parameter chosen
so that λ−1

d ε2 ≤ α2;

• if {λj}∞j=1 decays super–exponentially

λ−1
d

∑
j≥d+1

λj → 0, as d→∞ (4)

or, equivalently, λd+1/λd → 0 (as d→∞), then

φ(d, ε) = exp

{
1

2
d
[
log(2πeε2)− log(d) + δ(d)

]}
,

where δ(d) = o(1) as d→∞;
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• if {λj}∞j=1 decays hyper–exponentially

d

( ∑
j≥d+1

λj

)(∑
j≤d

1

λj

)
= o (1) , as d→∞ (5)

then

φ(d, ε) =
εdπd/2

Γ (d/2 + 1)
.

Note that (5)⇒ (4)⇒ (3); moreover, in the hyper–exponential case, φ(d, ε) is the volume
of a d–dimensional ball with radius ε. This justifies to interpret, in Equation (2), φ(d, ε) as
a d–dimensional volume parameter whilst fd, being the only factor depending on x ∈ L2

[0,1],
as a surrogate of the density of the Hilbert process.

Remark 2 Although results are exposed in the Karhunen–Loève (or PCA) basis, they can be
carried out with any orthonormal basis ordered according to the decreasing values of variances
of the projections, provided that they decay sufficiently fast (see [2]). In this view, PCA basis
is the optimal one since by construction presents the faster decays of such variances.

2 Classification

This section is devoted in defining classification procedures in a functional framework that
take advantage of the asymptotic factorization results provided by Proposition 1. It is
divided in two subsections each one: the first one illustrates a clustering algorithm whereas
the second one deal on a discriminant analysis procedure.

2.1 Unsupervised classification

Consider the sample {(X1, Y1), . . . , (Xn, Yn)} drawn from (X, Y ) defined as above, with X’s
are observed while the group variables Y ’s are latent. The aim is to determine the range
of Y (i.e. G) and, for each observed Xi the membership group (that is the value of Yi). If
the distribution of (X|Y = g) was specified then a full parametric approach may apply;
this has been done, for example, in [18] where authors used a maximum likelihood and
expectation maximization approach to identify the distribution parameters of a Gaussian
mixture assumed for fd. On the other hand, if no information are available, a distribution
free model could be used. In this latter view, consider the SmBP mixture (1) and apply
Proposition 1 to its left–hand side to obtain:

G∑
g=1

πgϕ (x, ε|g) = ϕ (x, ε) ∼ fd(x1, . . . , xd)φ(d, ε), x ∈ L2
[0,1], ε→ 0.

Such expression highlights how the surrogate density fd carries the information on the mix-
ture and, at the same time, endorses a “density oriented” clustering approach on fd as a
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fruitful tool in detecting the latent structure. Our proposal is to identify the groups by a
“locally high (surrogate) density regions” principle: the clustering algorithm computes the
estimates m̂d,g of the modes md,g of fd (whose number estimates G), for each g, it finds the
largest connected upper–surface containing only m̂d,g, and hence, it assigns group labels to
each observation consistently with its proximity to these sets (cf. [2] and references therein).
The algorithm procedure is illustrated below:

1. Obtain an estimate of the covariance operator and of eigenelements.

2. Fix d, compute f̂d,n (an estimation of the joint distribution density fd).

3. Look for its local maxima m̂d,g, g = 1, . . . , Ĝ.

4. Finding Prototypes : for each g in {1, . . . , Ĝ}, the g-th “prototypes” group is formed by

those Xi whose estimated PCs (θ̂1,i, . . . , θ̂d,i) belong to the largest connected upper–

surface of f̂d,n that contains only the maximum m̂d,g. In other words, for such individ-

ual, Ŷi = g.

5. Assign each unlabelled Xi to a group by means of a k–NN procedure (with k = 1).

As a by–product of such algorithm, it is possible to define a center for each cluster through
the “d–dimensional modal curves” built from m̂d,g and defined as follows:

X̂m
g (t) =

d∑
j=1

m̂
(j)
d,g ξ̂j(t)

where m̂
(j)
d,g is the j–th term of m̂d,g and ξ̂j(t) are the empirical versions of ξj(t). The remain

part of this section discusses some theoretical and practical aspects on the algorithm.

2.1.1 Surrogate density estimation

In order to estimate fd, we consider the classical multivariate kernel density estimator:

f̂d,n

(
Π̂dx

)
=

1

n

n∑
i=1

KH

(∥∥∥Π̂d (Xi − x)
∥∥∥) , Π̂dx ∈ Rd,

where KH (u) = det (H)−1/2K
(
H−1/2u

)
, K is a kernel function, H is a symmetric semi-

definite positive d× d matrix and, Π̂d is the projection operator over the subspace spanned
by the first d eigenfunctions of Σ̂n, the sample version of Σ, so that kernel argument depends
on the PCA semi–metric (see [11, Section 8.2]).

From a theoretical point of view, one may wonder if such estimator is consistent for fd
and, when this is the case, if it attains the same rate of convergence that holds when Πd

is known. A positive answer was provided in [2]; in particular, consider the special case
Hn = h2

nI, and suppose that:
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(B.1) the density fd (x) is positive and p times differentiable at x ∈ Rd;

(B.2) hn is such that hn → 0 and nhdn/ log n→∞ as n→∞;

(B.3) the kernel K is Lipschitz, bounded, integrable density function with compact support
[0, 1];

(B.4) the process X is bounded.

Then, the following result holds:

Proposition 3 Assume (B.1)–(B.4) with p > (3d+ 2) /2 and consider the optimal band-
width

c1n
− 1

2p+d ≤ hn ≤ c2n
− 1

2p+d

where c1 and c2 are two positive constants. Thus, as n goes to infinity,

E
[
fd (x)− f̂n (x)

]2

= O
(
n−2p/(2p+d)

)
,

uniformly in Rd.

From a practical point of view, an important task is the bandwidth selection: our choice
is to consider a diagonal bandwidth matrix (see [8] for a heuristic justification) whose non–
null entries are the univariate bandwidth provided by [26, p.48]. Anyway, it is clear that

larger is |H|, “smoother” is f̂d,n, smaller is the number of modes and hence the number of
groups. In other words, different choices for the bandwidth may be considered in order to
catch different phenomenon scales; this is done applying to H a scale factor δ > 0 whose
optimality (in a sense to be specified) is discussed below.

2.1.2 Modes and Prototypes

The construction of prototypes rests on estimated modes. A problem concerns spurious
modes caused by the choice of δ and sampling variability. To tackle this issue we select only
those modes m̂d,g for which f̂d(m̂d,g) is maximum over the parallelepiped m̂d,g ± [0, rh1] ×
. . .× [0, rhd], where hj is the resolution along the j–th direction of the grid used to estimate
the density while r is a positive integer, playing the counterpart of a tolerance coefficient.
For what concerns the identification of the largest connected upper–level sets of f̂d,n related
to each mode, we use the graphics visualization system of R software. Hence, Xi is assigned
to g–th prototype group if its estimated PCs belong to the g–th upper–level sets by using
the algorithm described in [22] and available in the R–package ptinpoly.

2.1.3 Tuning parameters

Given a data set, different values of d, r and δ may lead to different cluster results: thus, a
criterion to chose them is necessary.
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In view of Proposition 1, parameter d should be large enough to guarantees a good ap-
proximation for the SmBP (2), but small enough to avoid the well–known “curse of dimen-
sionality” in estimating non–parametrically fd. A good compromise is to choose d so that
the Fraction of Explained Variance, FEV (d) =

∑
j≤d λj/

∑
j≥1 λj, is larger than a suitable

constant. In practice, FEV is estimated from eigenvalues of Σ̂.
For what concerns a choice for (r, δ) and to provide some insights on the quality of clus-

tering solutions, we consider both external and internal criteria; in particular, we implement:
the purity index (based on some prespecified structure, which is the reflection of prior in-
formation on the data), the “Caliñski and Harabasz”, or briefly “CH”, index (that does not
depend on external information) and, when feasible (to not dependent on a single rule) a
combination of the two indices. Thus, accordingly to the nature of data, the idea is to look
at those (r, δ) which furnish the best value for these validation criteria. As a consequence
and because of the algorithm definition, such a choice for (r, δ) will automatically leads to
the optimal number of clusters G. In the remaining part of this section, we summarise these
two criteria; more details can be found in [29] and references therein.
Purity index measures how close is a clustering to an available pre–specified class structure
and, more precisely, the extent to which each cluster consists of objects from a single class.
In particular, for each cluster, consider the class distribution of the data; i.e. for class j
compute pgj, the frequency that a member of cluster g belongs to class j as pgj = πgj/πg,
where πg is the proportion of objects in cluster g and πgj is the proportion of objects of class
j in cluster g. Hence, for each cluster g, purity is calculated as

pg = pg(r, δ) = max{pgj : j = 1, . . . , L},

where L is the number of pre–specified classes; whilst the total purity is the sum of the
cluster purities weighted by the size of each cluster p =

∑G
g=1 pgπg. Clearly, p ranges in [0, 1]

with p = 0 meaning maximum separation and p = 1 maximum cohesion.
Among the internal validation indices, the CH index is known to achieve the best perfor-
mance (see [7]). It is defined as

CH = CH(δ, r) =

{
Tr(SB)
K−1

/
Tr(SW )
n−K , K > 1,

0, K = 1.

where N is the sample size, K is the number of cluster obtained choosing the couple (δ, r)
and Tr(SB) and Tr(SW ) are the traces of the estimated between and within covariance
matrices, respectively. The couples (δ, r) that maximize CH are selected as optimal and the
number of clusters K is consequently obtained.

2.2 Supervised classification

In discriminant analysis, differently from clustering, the presence of G distinct groups is
established and modelled by the observed variable Y : the aim is to label each new incoming
observation according to this known groups structure. To do this, a typical approach is to
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use a Bayes classification rule: given an observation x, one assigns it to the class γ(x) ∈
{1, . . . , G} to which correspond the highest posterior probability P(Y = γ(x)|X = x):

γ(x) = arg max
g=1,...,G

P(Y = g|X = x).

Equivalently, γ(x) is that index g′ in {1, . . . , G} such that

P(Y = g′|X = x)

P(Y = g|X = x)
> 1, for any g = 1, . . . , G and g 6= g′. (6)

If a probability density of X in the g–th group f(x|g) were known (with f(x|g) > 0), thanks
to Bayes formula, Equation (6) simplifies as follows:

πg′f(x|g′)
πgf(x|g)

> 1, for any g 6= g′,

and, consequently, the classification rule becomes:

γ(x) = arg max
g=1,...,G

πgf(x|g).

It is clear that such arguments do not apply straightforwardly in a functional settings without
further assumptions on the probability measures. A possible way to tackle the problem is to
consider the following classification rule: assign a new functional observation x to the g–th
group for which eventually, as ε tends to 0,

P(Y = g | ‖X − x‖ < ε)

P(Y = g′ | ‖X − x‖ < ε)
> 1, for any g′ 6= g. (7)

At a glance, it appears hard to use in practice. Anyway, thanks to Bayes formula, ratio in
(7) becomes

πgϕ (x, ε|g)

πg′ϕ (x, ε|g′)
.

Whenever assumptions of Proposition 1 hold for each (X|Y = g) with g = 1, . . . , G, then
the above ratio further reduces to

πgfdg (x|g)φ(dg, ε)

πg′fdg′ (x|g′)φ(dg′ , ε)
, as ε→ 0,

where fdg (x|g) is the joint density of the first dg PCs computed using the (conditional)
covariance operator Σg of the group g. Clearly, the asymptotic behaviour of the ratio in the
right hand part is related to the trade–off between the volume parameters φ(·, ε) and the
probability densities evaluated at possibly different dimensions dg and dg′ .

The classification rule may be further simplified if additional assumption may be imposed
on the mixture process X, since the spectrum decay of Σ controls those of each Σg (the
conditional covariance operator corresponding for the g–th group), the starting point to
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build fdg . In particular, consider the variance decomposition Σ = B + W , where B and
W =

∑
g∈G πgΣg represent the between and within covariance operator respectively. A

straight application of the Courant–Fischer–Weyl min–max principle for linear operators
leads to

λk(M1) ≤ λk(M1 +M2),

where {λj(Mi)} denote the eigenvalues of the linear operator Mi (decreasingly ordered).
The latter inequality ensures that eigenvalues of B, W and Σg (g = 1, . . . , G) have a decay
at least fast as the one of Σ. In other words, since eigenvalues decay is a measure of how
much X is concentrate in the space, the process (X|Y = g) in each sub–population must be
“concentrate” at least as X. As a consequence, if the spectrum of Σ decays exponentially
(according to (3)), then dg can be chosen equal to d for any g = 1, . . . , G, φ(d, ε) simplifies
and one can write the classification rule (7) similarly to the multivariate case, replacing a
probability density with a surrogate version: assign a new functional observation x to the
g–th group for which eventually, as ε tends to 0,

πgfd (x|g)

πg′fd (x|g′)
> 1, for any g′ ∈ {1, . . . , G}, g′ 6= g,

or, equivalently, as d tends to +∞,

γ(x, d) = arg max
g=1,...,G

πgfd(x|g). (8)

Operatively, if one could specify the conditional densities fd(x|g), a full parametric approach
would be possible. Although γ(x, d) still depends of ε by means of d (see Proposition 1), it
is not so restrictive to assume that

(A.5) γ(x, d) is eventually constant as d explodes to infinity; i.e. there exists a positive integer
d∗ such that γ(x, d) = γ(x, d∗) for any d ≥ d∗.

This assumption holds, at least, in the case of a finite dimensional process.
At this point, a comparison of our approach with the one introduced in [19] is interesting

and one can trace some parallelism. Indeed, in both approaches, a dimensionality reduction
step, based on projection onto a finite vector subspace generated by a priori chosen basis,
is implemented and so the classification rule involves the conditional joint densities of the
projection coefficients. Moreover, if dg = d for all g, and one can assume an underlying
Gaussian mixture model, both approaches lead to the same classifier: the present section
justifies theoretically the use of (8) in a finite dimensional subspace. However, if eigenval-
ues of Σ decay slowly, we can not ensure that dg is the same varying g and the volume
terms φ(dg, ε) can not be neglected in the classification rule: the approach based on a pure
projective method could be unfruitful.

The illustrated method can be framed between the full parametric discrimination de-
scribed in [19] and the full nonparametric one proposed by [10], where the posterior proba-
bility is estimated directly by a kernel regression approach.
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2.2.1 Estimate classifier

Once d is chosen, since we want to work in a distribution free context, densities fd(x|g) have
to be estimated. Consider a sample {(X1, Y1) , . . . , (Xn, Yn)} from (X, Y ) and with dg = d
for each g = 1, . . . , G; a kernel density based estimator for (8) is given by:

γ̂n(x, d) = arg max
g=1,...,G

π̂g
ng

n∑
i=1

I{Yi=g} KHg

(∥∥∥Π̂g,d (Xi − x)
∥∥∥) (9)

where ng =
∑n

i=1 I{Yi=g} is the number of observations coming from goup g, π̂g = ng/n

estimates the mixture coefficient πg, KHg (u) = det (Hg)
−1/2K

(
H
−1/2
g u

)
, with K a kernel

function, the bandwidth matrix Hg is d × d and symmetric semi-definite positive, finally

Π̂g,d is the projection operator over the subspace spanned by the first d eigenfunctions of the

sample covariance operator Σ̂g for the group g.
Note that some simplifications may occur in (9). For instance, if the groups are balanced,

that is πg = 1/G for each g, then one can drops π̂g and ng. Another example concerns the

homoscedasticity case (i.e. Σg is the same for each g), where Π̂g,d = Π̂d is the projector over
the space spanned by the first d eigenfunctions of the within (or pooled) covariance operator

Ŵ =
∑G

g=1 π̂gΣ̂g.
For what concern the choice of d and Hg one can refer to the discussion in Section 2.1.3.

It is scarcely necessary to observe that, in the discriminant context, coefficients r and δ are
not necessary, because we have a specific bandwidth matrix for each group and the main
goal is not the estimation of a mode.

To complete the analysis, we study the asymptotic properties of the classifier γ̂n defined
in (9). In particular, we consider the Bayes probability of error

L? = min
γ

P (γ (X) 6= Y )

and the conditional probability of error

Ln = P (γ̂n (X, d) 6= Y | {(X1, Y1) , . . . , (Xn, Yn)})

and we study how Ln behaves when n tends to infinity. In particular, convergence of Ln
to the Bayes error probability L? is stated in the following proposition, which is a direct
consequence of results in [6, Section 5].

Proposition 4 Take Hg = hgI. Under assumptions (A.1)–(A.5), Ln converges to L? in
probability as n tends to ∞.

3 Applications to synthetic and real data

This section concerns the simulations and applications of described methods: the first two
subsections are dedicated to clustering (3.1 considers an experiment under controlled set-up
whereas in 3.2 we apply clustering to real dataset), the last one (Section 3.3) is dedicated to
discriminant.
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3.1 Clustering: simulation examples and comparison with com-
petitors

In the following a simulation study provides a quantitative comparison of the presented
algorithm versus competitors. Although the methods are unsupervised, we evaluate their
goodness in detecting the underlying groups structure by measuring a misclassification error
like if it was a supervise exercise. Besides, by construction the SmBP clustering provides an
estimate of the number of clusters that must be studied as well, being itself a source of noise.
As pointed out in Section 2.1.3, both misclassification error and the number of detected
clusters depend on the choice of parameters: keeping in mind this fact, the simulation
exercise is coherently calibrate.

In order to generate the dataset, we use the functional basis expansion:

X
(g)
i (t) =

L∑
l=0

√
βl τ

(g)
i,l ψl(t), t ∈ [0, 1], i = 1, . . . , ng and g = 1, . . . , G,

where βl = 0.7× 3−l (l = 1, . . . , L = 150) and ψl(t) is the l-th element of the Fourier basis

ψl(t) =

{ √
2 sin(2πmt− π), l = 2m− 1;√
2 cos(2πmt− π), l = 2m.

For what concerns the mixture, it is controlled by means of τ (g)’s. Here we deal with G = 2
and, to avoid spherical shaped groups, uncorrelated but dependent coefficients (τ

(g)
i,l )Ll=1 are

generated as follow:
τ

(g)
i,1 = sin(ϑi) cos(π

2
I{g=2}) + σεi,1

τ
(g)
i,2 = sin(ϑi) sin(π

2
I{g=2}) + σεi,2

τ
(g)
i,3 = cos(ϑi) + (−k)g + σεi,3
τ

(g)
i,l =

√
0.1εi,l, 4 ≤ l ≤ L

with (ϑi) i.i.d. as a Beta(5,5) scaled on [−π, π] and (εi,l)
L
l=1

i.i.d.∼ N(0, 1). In other words,

(τ
(g)
i,l )3

l=1 are the Cartesian coordinates of the spherical ones (1, θ
(g)
i , π

2
I{g=2})

3
l=1 plus a vertical

translation (−k)g and a Gaussian noise ε (randomness is confined in the polar angle ϑ and
in the noise ε). In particular, limited to the first three components, we deal with two noised
semi–circumferences laying on orthogonal planes, with unitary radius, whose centers are
(0, 0,±k) and chosen so that the clouds of points of (τ

(g)
i,l )3

l=1 look like two bounded up
horseshoes. A reasonable range for k is (0, 1): outside this range, the two un–noised groups
can be separated by means of a plane, a structure easily identifiable. For what concerns σ,
one can choose (0, k/3) to avoid that, due to noise variability, groups overlap too much.
With such choices, we are concentrating the process along three orthogonal directions so that
the PCs tend to replicate the τ ’s structure. Moreover, this setting ensures that Proposition 1
applies. In fact, eigenvalues (of Σ) decay faster or at least equally to {βlV ar(τl)}Ll=1. Due to
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boundedness of V ar(τl), it inherits the same decay of {βl}Ll=1 that is exponentially (3) with
C = 1/3.

In our simulations, we consider n1 = n2 = 300, σ =
√

0.005 and k = 0.5 to which
corresponds FEV (3) always greater than 99% that suggest us to fix d = 3. Curves are
generated over a grid of 100 equispaced points on [0, 1]. For the sake of illustration, Figure 1
depicts the scatter plot of an observed set of (τi,l)

3
l=1, a selection of the corresponding curves

and the prototypes regions obtained with our algorithm when δ = 2 and r = 5 (that produced

Ĝ = 2).
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Figure 1: (Left) simulated coefficients (τ
(k)
i,l )3

l=1, (middle) a sample of simulated curves and
(right) upper level sets associated to the estimated modes on the factor space.

We generate 400 Monte Carlo sample according to the above setting. To each replication
we apply the SmBP clustering that returns the corresponding estimated number of clusters Ĝ
and the misclassification error. According to FEV criterium we set d = 3 and we explore the
behaviour of the algorithm when δ = 0.6, 1, 1.4 and r = 1, 5, 10. The following competitors
are considered:

(KM) the functional k–means clustering (see [9]) with G = 2;

(GM) the EM clustering method based on mixture model of Gaussian components applied to
the first three PCs. We consider both G = 2 and G estimated by means of a Bayesian
Information Criterion (BIC). The algorithm is coded in package Rmixmod (see [1]).

Table 1 summaries the main results. For SmBP clustering, we report the mean and the
standard deviation of misclassification errors and the 0.5, 0.75, 0.9 order quantiles of Ĝ
varying δ and r; the same results are provided for (GM) combined with BIC, and only the
misclassification error whenever G is fixed. Such results show that there exists an optimal
configuration of parameters δ = 1.4 and r = 10 for the SmBP clustering for which the two
clusters are correctly recognized at least in the 90% of cases, with an average misclassification
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error equal to 8.8%. It can be noted that the parametric method (GM) produces good results
whenever G is fixed but gets worse when G have to be estimated, since BIC overestimates
the number of clusters.

Algorithm Parameters Miscl. Error Ĝ

δ r Mean St. Dev. q0.5 q0.75 q0.9

0.6 1 0.676 0.060 11 13 14
5 0.480 0.112 6 7 8
10 0.126 0.140 2 3 3

1 1 0.563 0.088 7 8 9
SmBP 5 0.372 0.141 4 5 6

10 0.081 0.144 2 2 3
1.4 1 0.463 0.107 5 6 7

5 0.299 0.146 4 4 5
10 0.088 0.174 2 2 2

# clusters G
KM 2 0.377 0.068 − − −
GM 2 0.153 0.106 − − −

BIC selection 0.666 0.034 9 10 11

Table 1: Misclassification errors of SmBP clustering versus competitors and (when available)
quantiles of the estimated number of clusters.

3.2 Clustering: real data illustration

We illustrate how our clustering technique (from now on, SmBP clustering) work when
applied to real dataset. The aim is twofold: from one hand to show the cognitive support
that the method could bring on the studied phenomenon, and, on the other hand, what kind
of practical problems could occur and how to treat them.

Presentation goes through three datasets belonging to different domains: spectrometric
analysis, energy consumption and neuroscience.

3.2.1 Spectrometric curves

Spectroscopic analysis is a fast, non–destructive and not–expensive techniques which provides
an estimate of the composition of an aliment on the based on the absorption of light emitted
with different wavelengths by a spectrometer. Since the measure of absorption is a function
of the wavelength, it represents a typical functional data. In the last two decades, various
functional techniques has been widely explored for this kind of data: see for instance, [5, 11]
in the supervised classification framework.

In the following, we illustrate an application of the SmBP clustering method to the well
known Tecator dataset (available at http://lib.stat.cmu.edu/datasets/tecator). It
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Figure 2: Tecator curves (left) and their 2-nd derivatives (right).

consists of 215 spectra in the near infra–red (NIR) wavelength range from 852 to 1,050 nm,
discretized on a grid of 100 equispaced points, corresponding to as many finely chopped
pork samples. Fat, protein, and water content, obtained by a traditional chemical analysis,
is available for each sample. As conventionally done, in our study we consider the second
derivatives of spectrometric curves instead of the original ones and that to avoid the well-
known “calibration problem”, due to the presence of shifts in the curves (see [11]). Original
spectrometric data and their second derivatives are visualized in Figure 2.

Since spectrometric data should represent a way to determine the chemical composition of
the meat, the structure of the distribution of chemical components should be reproduced by
the one of spectrometric curves. In this view, we first study the available chemical measures.
The correlation analysis shows that the three components are highly linear correlated: in
particular fat and water present a linear correlation coefficient equals to −0.988, whereas the
content of protein exhibits a positive correlation with fat (0.814) and negative with water
(−0.861). This suggests to use PCA in order to summarize the chemical composition: in that
way, the first PC explains the 98.5% of the total variability. Observing the kernel estimate
of the density of this PC (see the upper panel in Figure 3), the poly–modal distribution
suggests that the sample is a mixture of three kind of meats: the three groups are detected
by considering the largest upper level sets containing the modes of the estimated density that,
in the one dimensional case, reduces to look for the local minima whose abscissa identify
class boundaries. Hence, it is expected that the spectrometric curve distribution presents
a three modal structure as well that, by construction, should be detected by the clustering
algorithm defined in Section 2.1.

After running a functional PCA on the second derivatives of spectrometric curves, we
get that the spectrum is rather concentrate: the first three PCs explain 98.5% of the total
variability, and this suggest to use d = 3 in our approximation. The selection of parameters
r and δ is performed according to the maximization of CH index over a bivariate grid built
with r = 1, . . . , 7 and δ varying from 0.2 to 1 with step 0.1. Index CH reaches its maximum
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Figure 3: Density estimate of the first PC of chemical components and the same stratified
according to clusters analysis carried out with r = 5 and δ = 0.2.

for r = 5 and δ = 0.2 to which correspond k = 4 clusters. In order to understand the
appropriateness of this choice, beside the internal criterion CH we use and external criterion
by computing, for each couple of parameters r, δ, the index of purity according to the three–
group structure shown by the first PC which summarize the chemical variables. It emerges
that the couple (r, δ) maximizing CH provides also an high degree of purity: this fact can
be appreciated inspecting Figure 3 and provides an heuristic support about the possibility
to reproduce the main features of the distribution of the chemical measures from the one of
the spectrometric curves.

3.2.2 District heating load-curves

A district–heating system (or “teleheating”) allows to distribute heat, generated in a central-
ized location, for entire districts through a network of insulated pipes. Due to his efficiency
and the pollution control, this system is spreading in many cities. To guarantee an optimal
scheduling in generating heat, that allows to choose the right mix of on–line capacity, the
analysis of flows of demand of heating is crucial. These flows depend mainly on two factors:
an intra–daily pattern of the load demand, known as load curve, and on seasonal aspects.

Since consumer characteristics are very different according to seasons and weather con-
ditions, to manage data from district–heating system, also in a forecasting perspective, it
is useful to stratify the set of load curves into a few homogeneous groups exhibiting similar
demand patterns. In what follows we propose an application of our clustering algorithm to
data on heat consumption in Turin, a North–West Italian centre, where the district heating
is produced through a co–generation system. The dataset has been used previously in a
forecasting context based on regression approaches (see [15, 16]).

The dataset consists of hourly measurements of the heat consumption for residential and
commercial buildings during the periods October, 15–April, 20, covering the years 2001–02,
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Figure 4: Demand of heat in a selected week of November 2002, January and March 2003.
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Figure 5: Normalized load curves, corresponding to daily profile.

2002–03, 2003–04 and 2004–05. Due to privacy requests from the data supplier, the data
have been normalized. Figure 4 displays behaviour of heating demand in three selected weeks
in autumn, winter and spring: it is possible to distinguish the intra–daily pattern, due to an
inertia in the demand reflecting the aggregate behaviour of consumers, and also appreciate
the seasonal evolution. Differently from electricity power demand, intra weekly differences
among working days and weekend do not appear.

Taking advantage of the functional nature of the dataset, in a natural way, we split the se-
ries for each period into 187 functional observations, each one coincident with a specific daily
load curve. Finally we dispose of a functional dataset consisting in 748 curves discretized
over a equispaced mesh of 24 points. Figure 5 displays such set of curves.

The first step of our procedure is to perform a functional principal components analysis.
It emerges that the spectrum is rather concentrate: the first three PCs explains more than
97% of the total variance, and thus it is sufficient limit our analysis to d ≤ 3. In order to
provide an an interpretation of the contribution of the relevant CPs, we exploit a graphical
tool where we report the estimated mean curve plus and minus a suitable multiple Mj
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Figure 6: Contribution of the first three principal components.

of each estimated eigenfunction: µ̂ ±Mj ξ̂j

√
λ̂j (see e.g. [24]). The results, visualized in

Figure 6, show that the first eigenfunction, which does not present sign change, describes a
vertical shift effect, due to weather conditions in seasons, whereas the second eigenfunction
highlights differences among demand in the morning and in the remaining part of the day:
it seems related to the heat retention ability of buildings (a greater heating in the morning
produces less need in the afternoon). Finally the third eigenfunction seems connected and
counter–posed to the three peaks of demand that appear systematically during the day in
the morning, in the afternoon and in the evening.

In order to apply the SmbP cluster algorithm one has to select preventively parameter
r and δ. Using the same grid as in Section 3.2.1, the CH criterion suggests r = 3 and
δ = 0.5, a choice that leads to k = 6 clusters. These clusters reflect the differences in level
and behaviour of daily demand of heating in the different seasons: high levels of demand in
winter with a strong peak in the morning, moderate level in autumn and spring with load
curves presenting three peaks (in the morning, in the afternoon and in the evening). To
better understand the effect of clustering, we report in Figure 7 the calendar positioning of
each element of clusters (each point represents a specific load curves, synthesized by its daily
average) and alongside the modal curves, plotted using the same level of grey. Moreover
we report in Figure 7 also the box-plots resulting after a stratification of the daily mean
temperature by the cluster labels: one can note as the temperature, without presenting a
multi–modal density, is one of the most important external variable that can be used in such
clustering exercise. Matching the results, we recognize the typical patterns for winter and
mid-seasons, distinguish freezing, cold and mild days. Finally, it emerges that if one would
set up a forecasting model, an accurate prevision of temperature will be the key to obtain
good performances in predicting demand of heating.
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Figure 7: Calendar positioning of clusters against the daily mean load, corresponding modal
curves and relationship among clusters and daily mean temperature. Along the panels, a
cluster is identified by the same grey level.

3.2.3 Neuronal experiment

The analysis of neuronal spiking activity, recorded under various behavioural conditions, is
a central tool in neuroscience: data acquired from multiple neurons are essential to explain
neural information processing. The problem is that contributions of multiple cells must be
disentangled from the background noise and from each other in order to analyze the activity
of individual neurons. The procedure that allows to distinguish the activity of one or more
neurons from a noisy time series is known as spike sorting.

In this section we show how the SmBP clustering can contribute in spike sorting perspec-
tive: each detected cluster can be thought to correspond to the activity of a single neuron.
The dataset comes from a behavioural experiment performed at the Andrew Schwartz motor-
lab (http://motorlab.neurobio.pitt.edu/index.php) on a macaque monkeyperforming
a center-out and out-center target reaching task with 26 targets in a virtual 3D environ-
ment (see [27] for a detailed description of the experiment considered). The neural activity
recorded consists of all the action potentials detected above a channel-specific threshold on a
96-channel Utah array implanted in the primary motor cortex. The data set is split in 1000
functional data representing the voltage of neurons versus the times, discretized over a grid
of 32 equispaced time points (normalized between 0 and 1). A sample, selected randomly,
of 30 of such curves is shown in Figure 8. An analysis of (a larger set of) these curves can
also be found in [27].

Performing the functional PCA on such set of curves we observe that also in this case the
spectrum is concentrated: the first PC explains 78.6% of the total variability, and explained
variance by the first three PCs is about 96.4%. Observing the 3-dimensional scatter plot of
the first three PCs (see Figure 9, left panel), three clouds appear evidently.

In order to detect a good choice for parameters r and δ, we perform our clustering
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Figure 8: A random sample of 30 curves.

algorithm with d = 3 over a grid built from r = 2, . . . , 7 (with step equal to 1) and δ =
0.2, . . . , 1 (with step 0.1) and compute the CH indexes. The analysis of obtained values
leads to various admissible configuration for the couple (r, δ), to which always correspond
k = 3 clusters: for instance r = 3, . . . , 7 combined with δ = 0.8, 0.9, 1 produce the same
number of cluster and the maximal CH. The right panel of Figure 9 shows the maximal
level set when one uses r = 7 and δ = 0.8.

Result of clustering procedure is visualized in Figure 10 where the centers of prototypes
(the modal curves) and the corresponding clusters are reproduced.

3.3 Discriminant: simulation and real data illustration

The aim of this section is to assess the performances of the supervised classification algorithm
illustrated in Section 2.2 (briefly, SmBP classifier) by the analysis of both simulated and
real datasets. The experiments consist in computing the (empirical) distribution out–of–
sample misclassification error by a two–fold cross–validation procedure repeated 100 times:
more in detail, for each available sample, at each iteration, the 2/3 of the data are used in
evaluating the classifier, and the misclassification error is estimated on the remaining part.
The estimation of the density in each group is performed by a multivariate kernel density
estimator with H diagonal, selected according to Section 2.1.1.

The out–of–sample errors are compared with those computed using parametric and non-
parametric competitors: the GLM classifier based on the coefficients of a basis representation
for functional data, nonparametric discrimination using kernel (NP in the following) and k–
NN estimation, based on the classic L2 metric (see [11]). All computations are done with
the software R: in particular, the competitor algorithms are taken from the package fda.usc
(see [9]).
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Figure 9: 3-D Scatter plot of the first three Principal Components and the corresponding
maximal level set when r = 7 and δ = 0.8.
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nin σ nout d = 2 d = 3 d = 4 d = 5 GLM k–NN NP
0.05 0.155 0.026 0.039 0.058 0.361 0.024 0.042

(0.039) (0.015) (0.024) (0.035) (0.060) (0.020) (0.023)
100 0.10 50 0.228 0.095 0.111 0.134 0.345 0.104 0.130

(0.052) (0.032) (0.040) (0.044) (0.054) (0.041) (0.041)
0.15 0.257 0.188 0.195 0.221 0.397 0.159 0.200

(0.061) (0.045) (0.050) (0.051) (0.064) (0.049) (0.048)
0.05 0.185 0.033 0.042 0.057 0.307 0.041 0.047

(0.042) (0.017) (0.017) (0.019) (0.031) (0.018) (0.022)
200 0.10 100 0.275 0.150 0.154 0.167 0.335 0.136 0.148

(0.053) (0.049) (0.027) (0.028) (0.029) (0.038) (0.031)
0.15 0.255 0.228 0.234 0.265 0.440 0.232 0.250

(0.039) (0.033) (0.031) (0.035) (0.047) (0.040) (0.036)
0.05 0.157 0.020 0.033 0.036 0.356 0.030 0.035

(0.029) (0.007) (0.011) (0.010) (0.033) (0.010) (0.011)
300 0.10 150 0.217 0.100 0.117 0.128 0.383 0.093 0.108

(0.033) (0.024) (0.023) (0.026) (0.036) (0.026) (0.026)
0.15 0.234 0.171 0.183 0.192 0.411 0.162 0.178

(0.030) (0.024) (0.026) (0.023) (0.030) (0.026) (0.027)

Table 2: Estimated mean and standard deviation (in parentheses) of misclassification error
for the two–horseshoes setting.

3.3.1 Analysis of simulated data

The dataset are generated according to the two “horseshoes” model described in Section 3.1
with the following settings:

- Sample size n = 150, 300, 450 with training–sets of size nin = 100, 200, 300;

- The groups are balanced: πg = 0.5 for g = 1, 2;

- The vertical translation parameter k equals 0.5;

- Three degree of variability are considered to model the noise around the two semi–circumference:
σ = 0.05, 0.10, 0.15, (small, medium and high variability).

Performing the discrimination exercise (we use, for our classifier, a number d of PCs varying
from 2 to 5), one obtains the misclassification error distributions whose summary measures
(mean and standard deviation) are collected in Table 2. In Figure 11 are reproduced such
error distribution when nin = 200, σ = 0.05, 0.10, 0.15. It emerges that when d = 3 the
SmBP classifier produces the best results: they are comparable with the ones of the k–NN
and the nonparametric approach. As expected, due to the non–spherical nature of data, the
GLM approach produces the worst results.
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Figure 11: Distributions of misclassification errors estimated over 100 replications when
n = 200 and σ = 0.05, 0.10, 0.15 (form left to right).

3.3.2 Analysis of real datasets

In what follows we analyze performances of our SmBP classifier on three real well-known
datasets belonging to three very different research domains: electrocardiography, growth
curves and quality control. The same datasets have been used previously in [18] in a unsu-
pervised classification framework.

The first dataset comes from the UCR Time Series Classification and Clustering website
(http://www.cs.ucr.edu/~eamonn/time_series_data/). It consists of 200 electrocardio-
graphy (ECG) curves observed at 96 discretization points and related to 2 groups of patients
(see [23] for more details).

The second dataset is the well-known Berkeley growth dataset (see [28]). It contains
stature measurements for 54 girls and 39 boys, aged from 1 to 18 years, and observed in 31
(not equispaced) discretization points. To obtain the growth curves, the original raw data
are preprocessed by fitting each individual set of discretized data by a monotone smoothing
method (see [24]). The aim is to discriminate the curves on the base of the gender.

The third dataset, described in detail in [21], comes from Danone Vitapole Paris Research
Center. The aim is to detect the quality of produced cookies in relationship with the flour
kneading process. Each curve in the dataset collects the measures of dough resistance of
flour during the kneading process at 241 equispaced instants of time in the interval [0, 480]
seconds. Overall, 115 flours are analyzed: 50 of them have produced cookies of good quality,
25 produced medium quality and 40 low quality. The goal of the analysis is to classify the
functional dataset on the base of quality of cookies.

The three datasets of curves are plotted in Figure 12: in the plots the group membership
of each individual (patient, child or flour) is highlighted by using a different grey scale.

We apply our SmPB classification method with balanced group varying the dimension d:
for the ECG dataset we use d = 2, 3, . . . , 9 whereas for the other two cases, d = 2, . . . , 5. The
distributions of misclassification errors for our approach and the competitors are reproduced
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Figure 12: Curves of considered datasets: ECG (2 groups), growth curves (2 groups) and
kneading process (3 groups).

δ = 1 ECG Growth Curves Kneading Process
SmBP d = 7 0.128 (0.036) d = 3 0.028 (0.024) d = 3 0.273 (0.061)
GLM 0.212 (0.050) 0.075 (0.049) 0.286 (0.070)
k–NN 0.082 (0.036) 0.030 (0.027) 0.221 (0.068)
NP 0.143 (0.039) 0.041 (0.030) 0.251 (0.064)

Table 3: Estimated mean and standard deviation (in parentheses) of misclassification error
distribution for the three real datasets. For the SmBP approach the dimension d at which
we obtain the best results is reported.

in Figure 13. Moreover, to allow a direct comparison, Table 3 collects the estimated mean
and standard deviation of misclassification error distributions for the three real datasets: for
the SmBP approach, we report the best results obtained and the corresponding dimension
d. Unbalanced groups structure (requiring the estimate of prior probabilities πg) does not
change obtained results. It appears how the SmBP classifier is sensitive to d: there exist
an optimal choice for d even if larger values may amplify noise due to bad estimation of
fd. It is worthy to note that our method performs rather well in comparison with to the
other ones: despite the k–NN approach tends to produce good results uniformly in all cases,
our method is always comparable, with closed results. More in detail, in the growth curves
case with d = 3 SmBP classifier is equivalent to k–NN and better than the nonparametric
approach. For the ECG dataset the best result is when d = 7; it is comparable with the
results obtained the nonparametric classifier. About the kneading process dataset, it appears
a general difficulty in produce good classification results and all the proposed method suffer
of this common problem.
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Figure 13: Out-of-sample Misclassification errors over 100 replications. Case studies (left to
right): ECG, Growth and Kneading curves.
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